e BOOK

POSTFIX

EEEEEEEEEEEEEEEEEEEEEEEEEEEE

ﬂﬂﬂﬂﬂﬂﬂﬂ
iiiii

ADVANCE PRAISE FOR THE BOOK OF POSTFIX

“While many technical books are little more than recycled product documen-
tation, Koetter and Hildebrandt provide fantastic insight into the fundamentals
of Postfix. After building the solid understanding for the reader, they tackle
many of Postfix’s more advanced features. I put the book down feeling that,

if other mail programs had books like this, the technology would be better
understood.”

—TOM THOMAS, AUTHOR OF NETWORK SECURITY FIRST-STEP (CISCO PRESS)

“As Postfix grows in distribution and adds new features, it’s increasingly necessary
to have a comprehensive guide that administrators can consult for deploying and
maintaining their Postfix installations. Patrick Koetter and Ralf Hildebrandt are
experts who have been dedicated to Postfix since the very beginning, and their
book answers this critical need.”

—LUTZ JANICKE, CREATOR AND MAINTAINER OF THE TLS PATCH FOR POSTFIX

“What most impressed me about Ralf and Patrick’s book was the way it makes
difficult, complex concepts simple to understand. The authors clearly know their
subject inside and out and present it in an easy-to-follow format. They haven’t
missed anything.”

—~TOBIAS OETIKER, INVENTOR OF ROUND ROBIN DATABASE TOOL (RRDTOOL) AND
MULTI ROUTER TRAFFIC GRAPHER (MRTG)

“This book, with its many practical examples and clear explanations, is like
having a Postfix expert at your side.”
—DAVID SCHWEIKERT, AUTHOR OF POSTGREY (A POSTFIX GREYLISTING POLICY SERVER)

“I recommend this book for anyone using Postfix, especially those planning to
integrate the AMaViS virus scanning.”
—RAINER LINK, FOUNDER OF OPENANTIVIRUS.ORG

“It’s a must-have resource for anybody interested in using and understanding
Postfix, from the home user to the administrator of the largest mail systems
today.”

—DR. LIVIU DAIA, SENIOR RESEARCHER AT THE INSTITUTE OF MATHEMATICS OF THE
ROMANIAN ACADEMY

THE BOOK OF™
POSTFIX

State-of-the-Art
Mearage Tranaport

by Ralf Hildebrandt
and Patrick Koetter

—

NO STARCH
PRESS

San Francisco

THE BOOK OF POSTFIX. Copyright © 2005 by Ralf Hildebrandt and Patrick Koetter.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording, or by any information storage or retrieval system, without the prior
written permission of the copyright owner and the publisher.

LA
e Printed on recycled paper in the United States of America
12345678910-07060504

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. The Book of is a
trademark of No Starch Press, Inc. Other product and company names mentioned herein may be the trademarks of
their respective owners. Rather than use a trademark symbol with every occurrence of a trademarked name, we are
using the names only in an editorial fashion and to the benefit of the trademark owner, with no intention of
infringement of the trademark.

Publisher: William Pollock

Managing Editor: Karol Jurado

Production Manager: Susan Berge

Cover and Interior Design: Octopod Studios
Developmental Editor: Brian Ward
Technical Reviewer: Brian Ward
Copyeditor: Andy Carroll

Compositor: Riley Hoffman

Proofreader: Stephanie Provines

Indexer: Kevin Broccoli

For information on book distributors or translations, please contact No Starch Press, Inc. directly:

No Starch Press, Inc.
555 De Haro Street, Suite 250, San Francisco, CA 94107
phone: 415.863.9900; fax: 415.863.9950; info@nostarch.com; http://www.nostarch.com

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has been
taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall have any liability to any
person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the
information contained in it.

Library of Congress Cataloging-in-Publication Data

Hildebrandt, Ralf.

The book of Postfix : state-of-the-art message transport / Ralf Hildebrandt and Patrick Koetter.

p. cm.

ISBN 1-59327-001-1
1. Postfix (Computer file). 2. Electronic mail systems--Computer programs. 3. Internet. I. Koetter,
Patrick. II. Title.

TK5105.74.P66H55 2005

005.7'13--dc22

2003017563

To those who like good software

ABOUT THE AUTHORS

Ralf Hildebrandt and Patrick Koetter are active and well-known figures in
the Postfix community. Hildebrandt is a manager technics for T-Systems,

a German information and communications technology (ICT) solutions
company. Koetter is an information architect running his own company
consulting and developing corporate communication for customers in
Europe and Africa. Both have spoken about Postfix at industry conferences
and hacker conventions and contribute regularly to a number of open
source mailing lists.

ACKNOWLEDGMENTS

There are a lot of people we need to thank for this book, so we’ll each give
our lists.

Ralf Hildebrandt

One thing I noticed while writing this book was how little I knew about how
Postfix works “under the hood.” I knew how it behaved, but not exactly why,
at least not in every single component and corner-case. In some cases I didn’t
know much, in other areas I found my knowledge (or lack thereof) to be
wrong. I had to RTFM and ask a lot of questions on the helpful postfix-users
mailing list to get the details. This book will not be able to replace the
experience of running Postfix for more than five years, but it will lead you
closer to mastering it.

Admittedly, when I started with Unix in "94, the Internet was a much
safer place than it is now. There wasn’t any spam! I only got to know Postfix
because Sendmail kept crashing on me. After a brief interlude with qmail, I
found Postfix and stuck with it. I never looked back.

When Bill approached me and asked if I wanted to write a book about
Postfix, I hesitated at first. I needed a co-author, since the sheer amount of
work to be done was far too much for one person. At that time, Patrick was
cursing SASL on the list and vowed to write a SASL-HOWTO if he ever got it
working. He did, and I read the HOWTO, liked it, and asked him for his co-
authorship.

As it turns out, the amount of work was too much even for two people, so
Brian Ward joined us as a technical editor, adding valuable experience in
areas where we lacked it.

Without the help of Wietse Venema, Vi(clk)tor Duchovni, Lutz Janicke,
Andreas Winkelmann, and Peter Bieringer, this book would have never
reached its present state, so they're in for a free copy. Not that they need it,
but it sure makes a great gift. A big thanks and love go to my wife Constanze

viii

who endured my frequent “But I still have to write a chapter now!” excuses
and thus made it possible to finish the book instead of letting it become
vaporware. Oh yeah, and when reading Patrick’s comments, please keep in
mind that I'm only slightly crazy.

Patrick Koetter

Years will pass before the Internet provides us with all the services we want it
to have. Just as with any other new medium, the immediate impulse of those
who provide services is to push growth, especially in the quantity of content
and services. The quality of the service and its functionalities usually has to
stand back—at least until the service starts to pay off. In the meantime it is
exposed to people who like to abuse and destroy things rather than promote
and expand them.

This has happened to email and this is where Postfix comes in, and really
does provide a new dimension of quality.

When I went out to get myself an SMTP server, I was shocked that
Sendmail seemed to require a diploma of some sort, especially to figure out
the macros. So I looked around for other software. To cut it short: I fell in
love with Postfix.

Postfix showed me that it’s possible to have complex software configured
with a simple, clear, and structured syntax. If you know SMTP, you already
know most of the important details of configuring Postfix. I didn’t really know
SMTP when Ralf asked me to write the book with him. This book required
me to learn more than I had expected and to correct misunderstandings.

I am very proud that this book gives me the opportunity to hand over
what I know about computers and email today. Hopefully this book will get
you well on your way to using Postfix creatively. Creativity grows the best
when there is knowledge.

This book would not have seen the light without the knowledge, curiosity,
and support of Wietse Venema, Vi(clk) tor Duchovni, Liviu Daia, Lutz Janicke,
Florian Kirstein, Walter Steinsdorfer, Roland Rollinger, Tom Thomas, Alexey
Melnikov, Andreas Winkelmann, Eric “cybertime hostmaster,” and the users of
the Postfix mailing list; their questions and problems told us what was missing
when we thought everything had been said.

Most importantly, I need to thank Ralf, whose knowledge about Postfix is
outclassed only by his sassy use of computers. He’s like a duck taking to water
in this respect. It was Ralf who chose me to be his companion on this adven-
ture called The Book of Postfix, and I'm indebted to this crazy guy who became
a close friend as we wrote this book.

The book has been a great challenge, not only to me, but also to my wife
Birgit; her trust in me carried me through the countless lines of this book.
It’s a great privilege to be asked to do something that you've set your heart
on. It’s a godsend to have somebody like Birgit at your side when you finally
do it.

Acknowledgments

BRIEF CONTENTS

About This Book

XXV

Chapter 1
An Introduction to Postfix

1

Part I: Basics

Chapter 2
Preparing Your Host and
Environment

7

Chapter 3
Mail Server for a Single Domain

17

Chapter 4
Dial-up Mail Server
for a Single Domain
29

Chapter 5
Anatomy of Postfix
35

Part ll: Content Control

Chapter 6
A Postmaster’s Primer to Email
55

Chapter 7
How Message Transfer

Restrictions Work
69

Chapter 8
Using Message Transfer
Restrictions
81

Chapter 9
How Built-in Content
Filters Work
111

Chapter 10
Using Built-in Content Filters
117

Chapter 11
How External Content
Filters Work
129

Chapter 12
Using External Content Filters
141

Part lll: Advanced
Configurations

Chapter 13
Mail Gateways
169

Chapter 14
A Mail Server
for Multiple Domains
189

Chapter 15
Understanding SMTP
Authentication

217

Chapter 16
SMTP Authentication
247

Chapter 17
Understanding

Transport Layer Security
267

Chapter 18
Using Transport Layer Security
279

Chapter 19
A Company Mail Server
313

Chapter 20
Running Postfix in a chroot
Environment
369

Part IV: Tuning Postfix

Chapter 21
Remote Client Concurrency

and Request Rate Limiting
379

Chapter 22
Performance Tuning
387

Appendices

Appendix A
Installing Postfix
407

Appendix B
Troubleshooting Postfix
419

Appendix C
CIDR and SMTP Standards
Reference
435

Glossary
441

Index
449

CONTENTS IN DETAIL

ABOUT THIS BOOK XXV
AdAIIONAl RESOUICES ... ettt XXVi
Postfix Documentation, How-tos, and FAQSovvvimieeieeee e XXVi
MGG LISES oot XXVi
Conventions Used in This BOoKo.oueiiiii e e Xxvii
Domains and Names Used in This BOokcooiuiuiiiiniiiei e Xxvii
The Local Domain.iiee e e e xxviii
OUE PrOVIET. . e et xviii
Tl < TP PR PRSP P R PPPPPPRTPPN Xxvili
L7111 11 1T xxviii
1
AN INTRODUCTION TO POSTFIX 1

PART I: BASICS

2
PREPARING YOUR HOST AND ENVIRONMENT 7
HOSINGME L..oiiiiii e 8
CoNNECHVITY ..ot 8
TCP Port 2 o 8
System Time and TiMeSIAMPScuuviiiiiiiii e e 9
SYSlOG ettt ettt bbb e ereb b e ans 10
Name Resolution [DINS) ... et e e 11
DINS for Mail SEIVETS ...ttt 13
A RECOTAS ettt ettt ettt e et ee e eneea 13
PTR RECOTAS ...ttt 14
MX RECOTAS ... 15
3
MAIL SERVER FOR A SINGLE DOMAIN 17
The Minimum Configurationoooiiii i 17
Configuring POSHIXiieiiiie ettt 18
Setting the Hostname in the smtpd Bannercccoovviiiiiiiiiiiiiiiiiieciieee 18
Setting the Domain Mail Is Accepted Forccooiiiiiiiiiiiiiiiiciiccis 19
Setting the Domain to Be Appended to Outgoing Messagesccccveeeeunnns 20
Mapping Mail Sent to root fo a Different Mailboxcoocoeviiiiiiiiiis 21
Starting Postfix and Testing Mail Delivery to rootccccveeeviiveiceiiieieennns 22
Mapping Email Addresses to Usernamescccccooeeeeviiiiieeiiiiiiieeiiiieeeeennn. 25

Setting Permissions to Make Postfix Relay Email from Your Network 26

4

DIAL-UP MAIL SERVER FOR A SINGLE DOMAIN 29
Disabling DNS ResolUONoooiiiiiiieiiiie e 31
Adjusting Relay PErmissionsccc.eeiiiiiiiieiiiieiee et e et ee et e e e ersaae e ennnes 31
Setting the ISP Relay Hostooooiiiiiiiii 32
Deferring Message TraNSPOMc..iiiiiieiiie et 32
Triggering Message Deliveryccccoocovviiviiiiiiiiiie e 33
Configuring Relay Permission for a Relay Hostcccoociiiiiiiiii 34
POP-before-SMTP .. .oiiiii e ae s 34
SMTP AUthenticQhonooiiiiii e 34
5
ANATOMY OF POSTFIX 35
POSHiX DABMONS ...ttt ettt 37
POSHIX QUUEUES ... ieie ettt et e 42
IOPS e s 43
IMAP TYPES it e 44
How Postfix Queries Mapsoccooiiiiiioiiiiiiiie e 47
EXErNal SOUFCES ..ovvviiiiiiiee ittt et e e e et ae e e e rens 47
Command-Ling UHIIHEsooiiiiiiiiii e ee e 48
POSHIX ettt ettt ettt 48
POSIAIIAS ..ottt 48
POSICAT L.ttt e e e e e e e e e 48
POSHTITP oottt bt s s e e e et e e e e e e et e ae e e e e e ee e e e e e e aeeaae e 48
POSIAFOP ...ttt ettt 49
POSIKICK .ttt 49
POSHOCK ... 50
POSHOG it 50
POSIQUBUE ..ttt ettt e e e e e e e e e e e e e e e e et et e e e e e e e e e 50
POSISUPET ..ttt e e e e e e e e e e e et e e e et e e e e e e e e e e e e ea e neaan 51

PART II: CONTENT CONTROL

6

A POSTMASTER’S PRIMER TO EMAIL 55

Message Transport BAsiCsccoiviiiiiiiiiiiiiiiii e 55
Why Do You Need to Know This2ocooiiiiiiiiii 56

Controlling the SMTP Communication (Envelope)ccoviiiiiiiiiiiiiiicciicci 57

Controlling the Message Contentccouiiiiiiiiiiiei e 61
HEAAEIS ..ot 63
BOTY ettt ettt 64
AHAChMENTS ... 65

Xiv Contents in Detail

7

HOW MESSAGE TRANSFER RESTRICTIONS WORK 69
RESIFICHON THIGGEIS . .vvtiieiieet i ettt ettt bbb 70
RESIICHON TYPES .ouiiiiiiiiiiitiiitiiit sttt et e s et r et e e e e e e e e e e et e e er e e e e e e eeeeeee e 71
Generic RESIICHONSccuviiiiiiiiii e 71
Switchable Restrichonsccocoiiiiiiiii e 72
Customizable Restrichions ..o 72
Additional UCE Control Parameterscccoovvieviereiinionnionneieneeneennen. 73
Application RANGESccuvvviiiiiiiiiee ittt 74
BUilding RESITICHONSveiiiiiiie ittt ettt ee 74
INOIGTION . e e e e e e e e ee e 74
Moment of EValuahioncoociiiieiiiiiiieeiie e 75
Influence of Actions on Restriction Evaluationccccooiiiiiiiiiiiiiiiiiiicin, 75
Slowing Down Bad Clientscccooiiiiiiiiiiiii e 77
RestTiction Classescoiiiriiiiiiii e 79
8
USING MESSAGE TRANSFER RESTRICTIONS 81
How to Build and Test Restrictions ORI 81
Simulating the Impact of Restricionscccciiiiiiiiiiii 82
Making Restrictions Effective Immediatelycccoooieiiiiiiiiiiiiic 83
Restriction Defaultscoiieiie e 84
Requiring RFC Conformanceoooiiiiiiiiiiiiii e 84
Restricting the Hostname in HELO/EHLOccoviiiiiiiiiiiiiiiccie e 85
Restricting the Envelope Senderccccooviiiiiiiiiiiicccc e 87
Restricting the Envelope Recipientc..oooiiiiiiiiiiiic e 88
Maintaining RFC Conformanceccc..ooiiiuiiiiiiiiieiieiiie ettt 91
Empty Envelope Senderociiiiiiiiiiiiiic e 92
Special Role ACCOUNTSc..iiiiiieie e 92
Processing Order for RFC RestriCHONSviiiieeiiiiieiiiii e 93
Antispam MeASUIES ..ot e 94
Preventing Obvious Forgeriescoooviiiiiiiiiiiiiii e 94
Bogus Nameserver Recordsooioiiiiiiiiiciiec e @5
Bounces fo Multiple ReCIPIENtscoviiiiiiiiiii i 97
Using DNS Blacklistscc.vvviieeiiiiiieeiiii e 98
Verifying the Senderooo oo 103
Restriction Process Orderooveeiiiiiiiiie et 107
Uses for Restriction Classesocoviiiiiiiiiiiiniiiii e 108
9
HOW BUILT-IN CONTENT FILTERS WORK 111
How Do Checks Worke ..o e e 112
Applying Checks to Separate Message Sechonscccccvuveiiiiiiiiiiiiiiiieicciie e 112
What's So Special about These Parameters?c.cocoviiiiiiiiiinn 113
When Does Postfix Apply Checks?ccoiiiiiiiiiiie e 114
What Actions Can Checks Invoke? ... 115

Contents in

r

Detail

xv

10

USING BUILT-IN CONTENT FILTERS 117
Checking Postfix for Checks SUPPOTtoiiiiiiiii e 118
Building Postfix with PCRE Map SUPPOrtcccvvviiiiiiiiiieciiiececeiiie e 118
Safely Implementing Header or Body Filteringcooovvviviiviiiiiiic e 119
Adding a Regular Expression and Setting a WARN Actioncccoevrrnnnn. 119
Creating @ Test PAternccoooeiiieiiieiiiioiiieiiie e 119
Does the Regular Expression Match the Test Pattern?cc.ccvievicnieennnann. 119
Setting the Check in the Main Configurationcccccoiiviiiiiiiiiiiiciiis 120
Testing with Real Mail ... 120
Checking Headersocouiiiiiiiii e 120
Rejecting MesSagesoovieiiiiiiiiiiiiiiie et 121
Holding Deliveryoiiiiiiiiiiiiii ettt e 122
Removing Headersc.oooiiiiiiiiiiiie e 122
Discarding MeSSageSe..eiueeeeiiee et e 122
Redirecting MeSsSagesocuieuiiouiieiieie ettt 123
Fillering MeSSAGESvvvviieceiiie ettt e st e e enes 123
Checking MIME HEAErSc.oiviiiiiiiiiiiei et 124
Checking Headers in Attached Messagescoooeiieiiiiiiiciie i 125
Checking the Bodycccooiiiiiiiiiiii i 126
11
HOW EXTERNAL CONTENT FILTERS WORK 129
When Is the Best Moment to Filter Content?oooiiiiiiiii e 130
Filters and Address Rewritingccoouviiiiiiiiiiiiiiii e 131
content_filter: Queuing First, Filtering Latercocovoiiiiiiiiie e 132
Filter-Delegation DAemonscoovuuiieiiiuiieieciie e 134
The Basics of Configuring content_filtercccooiiiiiiiiiii 135
smipd_proxy_filter: Filtering First, Queuing Laterccoviiiiiiiiiiiiie e 137
Considerations for Proxy Filterscccoooiiiiiiiiccce 139
The Basics of Configuring smtpd_proxy_filterccoeviiiieiiiiiiiiiiiie, 139
12
USING EXTERNAL CONTENT FILTERS 141
Appending Disclaimers to Messages with a Scriptooovviiiiiiiiicc e 142
Installing alterMIME and Creating the Filter Scriptcccoooiiiiiiiiiiiii 143
Configuring Postfix for the Disclaimer Scriptccccovieiiiiiiciii e, 145
Testing the FIeroooooiiii e 146
Scanning for Viruses with content_filter and amavisd-newccoeeiiiniiinin, 148
Installing @MAVISANEWeiiiiiiiiiii it 149
Testing AMAVISA-NEWoiiiiiiiiiieiiii ittt ettt et ae e e 150
Optimizing amavisd-new Performancecccooiiiiiiiiiii e 154
Configuring Postfix to Use amavisd-newccoooviiiiiiiiiininicrcn. 157
Testing the Postfix amavisd-new Filtercccoeiiiiiiiiiiiiiiiie e 160
Scanning for Viruses with smtpd_proxy_filter and amavisd-newc.ccoooeviii. 163
Configuring Postfix to Use amavisd-new with smtpd_proxy_filter 164

xvi Contents in Detail

PART Ilil: ADVANCED CONFIGURATIONS

13
MAIL GATEWAYS 169
BASIC SEIUP .ttt 170
Setting Gateway Relay Permissionsccccvveveiiiiiieiiiieicciiie e 170
Setting a Relay Domain on the Gatewaycccocovivciiiciiiciriiiiiicicrcn, 171
Setting the Internal Mail Host on the Gatewayccocovviviiiiiiiiiieiiiieienns 171
Defining Relay ReCIPIENtsccooviiiiiiiiiiiii e 171
Advanced Gateway SEIUPooiiiiiiiiiiie e 172
Improving Security on the Mail Gatewayccoooeiieiiiiii e 173
Using Postfix with Microsoft Exchange Servercccooiiiiiiiiiiiiiiiieieinns 174
Configuring Exchange and Postfix Communicationcccovveiiiiiicnneee. 185
INAT SIUP e 187
14
A MAIL SERVER FOR MULTIPLE DOMAINS 189
Virtual Alias DOMQINSooiiiiiiiiiiii ittt e 189
Setting the Virtual Alias Domain Nameccccoeviviiiiiiiiiieieiiiie e 190
Creating a Recipient Address Mapcc.oocoiiiiiiiiiiiiiie e 190
Configuring Postfix to Receive Mail for Virtual Alias Domainsc..c...... 191
Testing Virtual Alias Domain Seingsccooeiveiriiiioieeiieeee e 191
Advanced MApPINgscc.ocoiiiiiiiiiiiiiiecieiee e 192
Virtual Mailbox Domainsccoiiiiiiii i 194
Checking Postfix for Virtual Delivery Agent Supportccccoiiiiiiiiiiiiii, 195
Basic Configurahoncc.eiiiiiiiiiiiiiie et 195
Advanced Configurahonccoooiiiiiiiiiiii e 199
Database-Driven Virtual Mailbox Domainsococoiioeiiiiiciee e 203
Checking Postfix for MySQL Map SUPPOrtcueeiiiiiiieiieiiecie e 204
Building Postfix to Support MySQIL Mapsocoeviiiiiiiiiiieiie e 205
Configuring the Databasecooooeiiiiiiiie e 205
Configuring Postfix to Use the Databasecccoevieiiiiiiiciii i 208
Testing Database-Driven Virtual Mailbox Domainscccc.ooeeeiiiiieeiiieeeen 212
15
UNDERSTANDING SMTP AUTHENTICATION 217
The Architecture and Configuration of Cyrus SASLccoiiiiiiiiiiiiicc e 218
Which Approach Is Best?ooiiiiiiiiiiii e 220
SASL: The Simple Authentication and Security Layerccoooeeviiiiiiiiiie e 221
Authentication INerfaceccooiiiiiiiiiii e 222
SMTP AUTH Mechanismscoouviiiiiiiiiiiiiie e 223
Authentication Methods (Password-Verification Services)cccccoeeeeen... 225
Authentication Backendsccooiiiiiiiiii i 225
Planning Server-Side SMTP Authenhcahionccooouuiiiiviieieiciie e 226
Finding Clients and Their Supported Mechanismscccccooeiiiiiniiiniinn, 226
Defining the Authentication Backend and Password-Verification Service 228

Contents in Detail

xvii

Installing and Configuring Cyrus SASLoiiiiiiiiiiiii e 229

Installing Cyrus SASLcoiiiiiiiiiiiici e 229
Creating the Postfix Application Configuration Filecccociiiiiii 230
Configuring Logging and the Log Levelcccccooviiiiiiiiiiiiiiiiiiicciieees 231
Setting the Password-Verification Servicecccccoiiiiiiiiiiiiicice 231
Selecting SMTP AUTH Mechanismsccoovviiiiiiiiiiiiiiieee e 232
Configuring saslauthd ..o 232
Configuring Auxiliary Plug-ins (QUXProOp)ccovveieeiiiieieciie e 236
Testing the Authenticationcccc.oiieiiiiiiieeiii e 242
The Future of SMTP AUTH ..o 245
16
SMTP AUTHENTICATION 247
Checking Postfix for SMTP AUTH SUPPOMeeieeieiieeie e 247
Adding SMTP AUTH Support 1o Postfixccoviiiiiiiiiiiiii e 248
Server-Side SMTP AUthenticationcccccciiiiiiiiieiiiie e e 249
Enabling and Configuring the Servercccooiiiiiiiiie 250
Testing Server-Side SMTP AUTHooiiiiiiiiii e 254
Advanced Server SeMiNGsc....oieeeiiiiieeiiie e 258
Client-Side SMTP Authenhcationccooiiiiiiiiiii i 259
AUTH for the Postfix SMTP Clientccoooiiiiiiiiiii i 260
Testing Client-Side SMTP AUTHoooimiiiiie e 263
The Imtp CHENt ..o 265
17
UNDERSTANDING TRANSPORT LAYER SECURITY 267
TLS BASICS oottt 268
How TLS WOTKS .viiiiiii ittt ettt enene 269
Understanding Certificatesccoiiiiiiiiiiiiiie e 270
How to Establish Trustccoeiiiiiiiiiiiiic e 270
Which Certification Authority Suits Your Needs?ccceiiiiiiiiiiinn, 271
Creating CertifiCatesiiiiiiieie et 271
Required Informationcocoiiiiiiiiiiiiiii e 271
Creating the CA Certificatecccoiiiiiiiiii e 272
Distributing and Installing the CA Certificatecoooeeviiiiiiiiiiiieeee 273
Creating Your Server’s Cerfificateccoieiieiiieiiiiiiieieeee e 276
Signing Your Server’s Certificateccccooiiviiiiiiiiiiiiiccie e 277
Preparing Certificates for Use in Postfixcc.ccooiiiciiiiiiiiiiiiii 278
18
USING TRANSPORT LAYER SECURITY 279
Checking Postfix for TLS SUPPOTt ...c..iiuiiiiiieiiieiceiie e 279
Building Postfix with TLS SUPPOItc.uiiiiiii i 281
Building and Installing OpenSSL from Source Codeccovviiiiiiiiiiiiiiiiiin, 282
Building Postfix with TLS ..o 282

xviii Contents in Detail

eIV SIidE TLS ot 283

Basic Server Configurationcociiiiiiiiiiii e 284
Server Performance TUNING «....oooeoiieiiee e 290
Server-Side Measures to Secure the SMTP AUTH Handshake 292
Server-Side Certificate-Based Relayingcocooviiiiiiiiiii e 298
Tightening the TLS Servercooiiiiiiiiii e 302
Client-Side TLS ..ottt e 302
Basic Client Configurationooocvuiiieiiiiieie e 303
Selective TLS USeocoiviiiiiiiiiiiii e 307
Client Performance TURINGcooviieiie e 308
Securing Client SMTP AUTHoooiiiiiiiie e 309
Client-Side Certificate-Based Relayingcccoovvveviiiiiiiiiiicciieccii e 309
Tightening Client-Side TLS ...ioiiiiiiiiiiiie ittt e 311
19
A COMPANY MAIL SERVER 313
Conceptual OVEIVIEWooviiiiiiiiiiiieetie ettt ettt ettt e 314
The LDAP Directory SHUCHIEccciiviiiiiiie ettt ettt eereb e eeeeenes 315
Choosing Attributes in a Postfix Schemaccoooiiiiiii 316
Branch Design ...oo.eoie et 317
Building User Objectscooiuiiiiiiiiiiiieeiie e 318
Creating List Objects ..ottt 319
Adding Attributes for the Remaining Serversc..ccccoeiiiiiiiiiiiie 320
Basic ConfIGUIGHIONeiieiie ettt 321
Configuring Cyrus SASLooiiiiiiiiii e 321
Configuring OpenLDAPc.oiiiiiiieci et 322
Configuring Postfix and LDAPoooiiiiiiiiiie e 325
Configuring Courier Maildropoooiiiiiiiiiiiiiiii e 333
Configuring Courier IMAP ..o 343
Advanced Configurahonoooiiiiiiiiiee e 348
Expanding the DIreCtonyoooioiiiiie e 349
Adding Authentication 1o SErversccc.ooieeviiiiieeiiiii e 350
Protecting Directory Dataccccuviiiiiiiiiiiiieiccii e 356
Encrypting LDAP QUETIesccovviiiiiiiiiiiiiiicccii e 358
Enforcing Valid Sender Addressescooovviiiiiiiiiiiiieiccie e 365
20
RUNNING POSTFIX IN A CHROOT ENVIRONMENT 369
How Does a chroot Jail Work? ... 370
Basic Principles of a chroot Setupc.oociiiiiiiiiiii i 370
Technical Implementationccccociiiiiiiiiiii 371
How Does chroot Affect Postix®ccocoiiiiiiiiiiiii e 371
Helper Scripts for chrootccoiiiiiii e 372
chrooted DAEMONSeiiiiiiiiietie et 372
chroot Libraries, Configuration Files, and Other Filesccccccvveiiiinnnnn. 374
Overcoming chroot RESIICHONScc..viiiiiiiiiiciiii e 375

Contents in Detail

Xix

PART IV: TUNING POSTFIX

21

REMOTE CLIENT CONCURRENCY

AND REQUEST RATE LIMITING 379

The Basics of Rate Limitingcovieieiir et 379

Gathering Rate SAtSHESeouveiiiieiiieiiee e 380
Running the anvil DAemonooovuviiiiiiiiiee e 381
Changing the anvil Log Intervalcoooiiiieeiiiiieeiiiiieeceeeeee e 381

Limiting Client-Connection Frequencycccoiiiiiiiiiiiiiiiiiiiicciee e 382
Testing Client-Connection Rate Limitscccc.ooveeioiiiieeeiiiiieeiieieeeeeeeeeeeee 382

Restricting Simultaneous Client Connectionscccovvviieeiiiiiiieeiie e 384
Testing Simultaneous Client-Connection Limitscccccvevriviiiiieiriinien 384

Exempting Clients from Limifscccooviiioiiiiiiioii e 386

22

PERFORMANCE TUNING 387

Basic ENRANCemMentsooooiiiiiiiiiiiiice e 387
Speeding Up DNS LookuUPsccvviiiiiiiiiiiiiii e 388
Confirming That Your Server Is Not Listed as an Open Relayc..o..... 389
Refusing Messages to Nonexistent Usersc..coooeeiiiiiiiiiinniiiii 390
Blocking Messages from Blacklisted Networkscoooiiiiiiiiiiiiiiins 391
Refusing Messages from Unknown Sender Domainscccovvviieeninicnnns 391
Reducing the Retransmission Attempt Frequencycocooiiiiiiiiiiiii, 392

Finding Botlenecksccoiiiiiiiiiiiii e 392
Incoming Queue Bottlenecksccooiiiiiiiiiiiiii 393
Maildrop Queue Bottleneckscociiiiiiiiiiii 395
Deferred Queue Bottlenecksccooviiiiiiiiiiiiiiiiccciicc e 396
Active Queue Boteneckscooiiiiiiiiiiiiiiieiii e 397
Asynchronous Bounce Queue Congestion Inequalityccooiiiiiiin. 399
Using Fallback Relays ..o 401

Tuning for Higher Throughputoooeiiiiieee e 402

Configuring an Alternative TraNSPOrtooieiiieieieie e 403

APPENDICES

A

INSTALLING POSTFIX 407

The Postfix SoUrce Codeiiiiiiiiiii ittt 407
Applying Patchescooiiiiiiiici e 408
Building and Installing from Source Codecoovvviiiiiiiiiiiciieccece, 408
Starting and Stopping Postfixccoviiiiiiiiiii 409

XX Contents in Detail

Installing Postfix on Debian Linuxccoooviiiiiiiiiiii e,
Installing Postfixccoviiiiiieie e
Starting and Stopping Postfixoccooiiiiiie e
Installing an Updatecccoiiiiiiiiiiiiiiiiiccciie e
Building from a Debian Source Packagecccccoeiiiiiiiinnnnn
Installing Postfix on Red Hat Linuxoovveiiiiiiiii e
Getting Postfix for Red Hat Linuxccoovvoiviiiiiiiiiiii e
Building an RPM from an SRPMccooiiiiiiiicieecc e,
Switching 10 POSHIXoooiiiiiiiiiiiii e
Removing the Sendmail MTA ...
Starting and Stopping Postfix in Red Hat Linuxccccoccvneen.

B
TROUBLESHOOTING POSTFIX

Problems Starting Postfix and Viewing the Logoooevvviiieeiiinieene,
Connecting 10 POSHIXccovuiiiiiiiieie it
Checking the Networkcocoviiiii,
Verifying the Listening Processccceoviiiieeiiiiieeiiiieeeee,
Getting Postfix to Use Your Configuration Settingsccccoovvvevinniinnnn,
Reporting Postfix Problemsoccooviiiiiiiiiiiiiiiiicc e,
Getting More Logging Informationccoooiiieeiiiiiiiiiicciee,
Client-Specific Loggingvevoveereeeieeieeeeiie e
Logging and gmgreeiiiiiiiiiiie e
Other Configuration Errorsocoviieiiiieie e
Intricacies of the chroot Jailccooiiiiiiiii
Solving Filesystem Problemscccccooieeiiiiiieeiiiiiieecceee e
Library Hell ...
Daemon Inconsistenciescccuuiiiiiiiiiiiiii e
Fork Hell ..o
StressTesting Postfixooiiiiiiii i
Disk 1/O o

Too Many Connectionscccccoeiiiiiiiiiieaniie e e

C
CIDR AND SMTP STANDARDS REFERENCE

Subnets in CIDR NOtGHONcooeuiiiiiieiiiiiieeeiiie e
Server Response Codesoccuiiiiiiiiiiiieeeiit et

GLOSSARY

Contents

n Detail

xxi

Using words to describe magic is like using a screwdriver to cut roast beef.
—Tom Robbins

ABOUT THIS BOOK

This book is a step-by-step guide to Postfix.
You start as a beginner, and when you make
it to the end, you’ll hopefully be an expert.
The individual chapters come in three types:

tutorials, theory, and Postfix practice. The tutorials
are primers that help you understand the subject before
you try to implement a solution in Postfix. Theory-
oriented chapters tell you how Postfix deals with the
subject. Practice chapters show you exactly how to go
from theory to a working installation.

Xxvi

We have split the book into four parts that separate major steps in
learning how to run Postfix:

Basics
Part I of the book shows you the basics of Postfix. You will learn how
to configure Postfix for a single domain and for a dial-up server. You'll
also see the anatomy of Postfix from a distance and find out what tools
it provides.

Content Control
Postfix allows you to significantly control the message flow on your sys-
tem. Part II starts out by showing you how SMTP communication works
and explains the format of email. From there, you’ll see how Postfix can
control the various aspects of message handling.

Advanced Configurations
Postfix often interacts with other third-party applications, such as SQL
servers, Cyrus SASL, OpenSSL, and OpenLDAP. The chapters in Part III
show you how to do it.

Tuning Postfix
Configurable software always leaves room for tuning. Part IV helps you
find bottlenecks in your installation and provides hints that will help
you increase the mail system’s overall performance.

Additional Resources

In addition to The Book of Postfix and the documentation that comes with
Postfix, there are two other resources that you can turn to when looking for
information or help.

Postfix Documentation, How-tos, and FAQs

The Postfix website (http://www.postfix.org/docs.html) has a page that covers
Postfix documentation, how-tos, and FAQs written by the Postfix community.

Mailing Lists

Wietse Venema runs several mailing lists that serve the Postfix community.
You can find information about how to subscribe to the following lists at the
Postfix Mailing Lists page (http://www.postfix.org/lists.html):

postfix-announce@postfix.org
A list for announcements of Postfix releases and updates.
postfix-users@postfix.org
General discussions about experiences with the Postfix mail system.
Postings are unmoderated and for members only.

About This Book

postfix-users-digest@postfix.org
A daily mailing of articles that were sent out via the postfix-users
mailing list.

postfix-devel@postfix.org
A low-traffic list for people interested in Postfix development.

The Postfix community discusses concepts, problems, errors, patches, and
many other topics on the postfix-users@postfix.org list. When you experience a
problem or want to know about anything else related to Postfix, chances are
that you will find the answer browsing through the mailing-list archives. Several
organizations or people host postfix-users@postfix.org archives that can be
accessed with a web browser. A comprehensive list of archives can be found at
the Postfix Mailing Lists page (http://www.postfix.org/lists.html).

Conventions Used in This Book

NOTE

Monospace type is used for

¢ Filenames and path names

¢ Mailing list names and Internet addresses, such as domain names, URLs,
and email addresses

¢ Daemons, commands, parameter names and values, environment vari-
ables, and command-line options

Monospace italic is used for

¢ Parameters and placeholders that should be replaced with the appropri-
ate value for your system

¢ Comments in sample command lines and code examples
Monospace bold is used for

Command lines and options to be typed into a shell window
Monospace bold italic is used to

Highlight specific lines referred to in the discussion

The $ character represents the regular prompt in command lines; the # character is the
superuser’s shell prompt.

Domains and Names Used in This Book

Because this book is about mail services, we will talk a lot about message
delivery and transport, and we will need to include names of domains,
senders, and recipients in examples. The names that we’ll normally use are
as follows.

About This Book Xxvii

xxviii

The Local Domain

Throughout the book, we’ll claim the domain example.com as our own. The
mail server will presumably accept (or at least consider) messages for local
users anyuser@example.com and anyuser@mail.example.com. When following
examples to build your own Postfix server, you will need to replace
example.com with the name of your domain.

NOTE Of course, we don 't really own the example.com, example.org, and example.net
domains. The Internet Assigned Numbers Authority (IANA) has veserved them for use
in documentation.,

Our Provider
Throughout the book, we’ll use the example-isp.com domain as our ISP’s
domain name.

Scripts
You can find supporting scripts and other helpful information, such as
errata, at http://www.postfix-book.com.

Comments

If you find an error or want to send some other feedback, please send your
comments to comments@postfix-book.com.

About This Book

AN INTRODUCTION TO POSTFIX

Postfix is a message transport agent
\’é (MTA) that transports messages from a
‘ mail user agent (MUA, or mail client) to
\\ a remote mail server with SMTP. An MTA
also accepts messages from remote mail servers
to relay them to other MTAs or deliver them to local
mailboxes. After transmitting or delivering a message,
Postfix’s job ends. Other servers are responsible for
getting the message to the end user. For example,
MTAs, such as POP3 or IMAP servers, hand the

message to an MUA like Mutt, Outlook, or Apple Mail,
where the user can read it.

At first glance, the MTA’s job seems fairly simple, but it isn’t. A message
transport agent is special because it must communicate across network
borders—they transmit content to other networks and accept content for
their own network. Common sense now dictates that anyone running a
network must take precautions to protect their servers and data from attacks,

2

Chapter 1

and there is a widespread belief that all you need to do is install a firewall
that controls connections in both directions between local and remote
networks. This is a myth: a firewall is not an application; it’s a concept.

The most popular part of a common firewall implementation is an
application that monitors and restricts connections. Unfortunately, firewalls
normally have no way of evaluating the content exchanged between two
hosts; they control the hosts, ports, and transport layer protocols that are
used in data communication, but they do not restrict communication based
on its content. Analyzing content is a much harder job that must be done by
specialized applications that can decide what to do with the content and
determine whether it is harmful or not. MTAs perform this task for email. In
addition, modern MTAs must be fast, reliable, and secure because they
transport the most popular data on the largest network on the planet: email.

There are many MTAs to choose from, but most of them fall short in one
way or another. For example, one has a brilliant security model, but its
developer base is no longer a small core team, and this is an invitation to
failure and opens doors for security problems. A second MTA is widespread
because it is part of a popular groupware package, but it appears that the
development team spent too much time on the groupware functionality and
forgot to keep up with Internet standards and new challenges from spam and
malicious attackers. Finally there’s an MTA that easily copes with the stan-
dards and has no problems with servicing many users at the same time, but it
has a security record so terrible that you need an expert who can take the
necessary counteractive measures between fixes in order to run it safely.

You don’t need to be an expert to run Postfix; it tries to run as safely as
possible out of the box. Postfix security is rooted in its default configuration
settings. If the basic configuration of an application is safe and complete
enough that you don’t need to change anything, it’s easy to run a safe MTA.
Better still, if you need to change something, Postfix has such a clear,
structured syntax for parameters and options that it is rather easy to change
the default behavior successfully. Furthermore, the Postfix application
design is modular, with each module running at the lowest possible privilege
level required to get the job done. Postfix was designed with security in mind,
starting at a higher level than the code itself.

Postfix performs admirably because it is focused on the core tasks of mail
transport; it doesn’t reinvent the wheel with functionality that other appli-
cations on the system already provide. Postfix gives you the means to plug in
external applications when a related task is outside of the message transport
area. In addition, Postfix uses the full power of Unix to do its work. This tight
integration with the operating system not only makes it easier to access
external applications, but also improves performance.

Alook at the modern tasks of mail transport and handling reveals Postfix
to be the very heart of a mail transport suite. In Figure 1-1, you can see that
Postfix is surrounded by specialized applications and tools to help control
content, connections, and relaying.

Figure 1-1: Postfix: The very heart of a mail transport suite

This book shows you how to configure Postfix for use in a small network,
as a mail relay, as a virus filter, and as a company mail server integrated into a
modern IT architecture. As you progress through the chapters, you will find
theory and tutorials that go far beyond the online manuals, helping you get
the most out of this excellent package.

An Introduction to Pastfix 3

PART |

BASICS

The first part of this book covers the basics of Postfix,
starting with the operating system prerequisites and
how to set up a mail server for a single domain. These
chapters will help you become familiar with the Postfix
configuration file syntax and some of Postfix’s compo-
nent programs and utilities.

Here is an overview of the four chapters in this part of the book:
Preparing Your Host and Environment

Before installing Postfix, you should always verify that your server host

can handle an SMTP server. Chapter 2 shows you how to configure the
operating system so that you can get the most out of Postfix.

Mail Server for a Single Domain
The first step in any new Postfix installation is to create a configuration
that can receive mail for a single domain. In Chapter 3, you will see how
to verify that the system works and how to create a basis for more compli-
cated setups.

Dial-up Mail Server for a Single Domain
You don’t need to significantly modify the single-domain setup to geta
working dial-up configuration. Chapter 4 shows you these small but
important changes.

Anatomy of Postfix
Wietse Venema says that “Postfix is actually a router,” one that routes
messages instead of IP packets. In Chapter 5, you’ll get the big picture of
how the Postfix innards interact.

6 Part |

PREPARING YOUR HOST AND
ENVIRONMENT

Al first there was nothing. God said, “Lel there be
light!” Then there was still nothing, but you could
see it.—Ignacio Schwartz

You’re probably pretty excited because
you just got this book and you can’t wait to

N
start working with Postfix. However, there

\‘ is one thing you should know before you start.

Postfix was built by Wietse Venema, who really knows Unix, and the

Postfix design does not include functionality that Unix provides by default.
Therefore, Postfix expects your system to be set up properly and will only
perform as well as the underlying system.

Don’t skip this chapter because it seems like kiddie stuff. Take the time
to go through the following sections to ensure that your system is in order.
Postfix will reward you for this effort with fast, reliable, and secure services,

Here is the system checklist for Postfix:

1 Set your hostname correctly
[Verify your host’s connectivity

[Maintain a reliable system time

8

[0 Make sure that the syslog service can record Postfix diagnostics
0 Configure name resolution for the client

0 Configure domain name service (DNS) records for the mail server

Hostname

A mail server must have a fully qualified domain name (FQDN; see RFC 821,
ftp://ftp.rfc-editor.org/in-notes/rfc821.txt) such as mail.example.com to inter-
operate reliably with other systems. Postfix automatically uses the hostname
that you assign to the server when greeting remote mail clients and servers,
unless you manually configure another name.

A fully qualified domain name is also important because Postfix does
more than accept mail from clients—when in client mode, Postfix also
transports messages to other mail servers. Many mail servers check the
hostname that the client announces and do not accept messages if the client
does not provide a fully qualified domain name, and some servers even
check that the FQDN resolves in DNS.

Your operating system sets your system’s hostname at boot time. To see
whether your system already has an FQDN, log in and enter hostname:

$ hostname -f
mail.example.com

If this command does not return a fully qualified domain name, find out
how your system sets the hostname and fix it. However, if your system already
has an FQDN hostname, but you would like Postfix to use a different one,
leave your system’s setting as it is. You'll override the default using the
myhostname parameter instead.

NOTE The -f option to hostname doesn’t work on Solaris, with the GNU hostname command,
and in some other environments. If your hostname doesn’t work as deseribed here, try
omitting the -f option. If that doesn’t work, consult your manual.

Connectivity

Chapter 2

Verify that your machine can reach its network and that hosts on the network
can talk to it. The first part should be easy—if your machine can go online
and access web pages, it is connecting to a network. Incoming connections
are trickier. To test them, you need a client in the network that typical clients
will connect from. If Postfix offers services to the entire Internet, you should
verify connectivity from a host that is completely independent of your server.

TCP Port 25

Make sure that nothing blocks your server’s TCP port 25. If you have a
firewall, make sure that the firewall policy allows incoming and outgoing
connections on port 25. Keep in mind that some Internet service providers

(ISPs) block outgoing connections to port 25 on the entire Internet on their
routers unless you ask them to lift the restriction. Some ISPs may refuse to lift
the restriction, preferring that you relay through their mail servers using a
system such as SMTP authentication, described in Chapter 16.

The reason that TCP port 25 must be kept open is that Postfix and other
mail servers listen for connections on it. It is the official IANA port assign-
ment for SMTP (see http://ww.iana.org/assignments/port-numbers for a full list).
The IANA is the central registry for assigned numbers in the Internet Proto-
col, such as ports, protocols, enterprise numbers, options, codes, and types.

System Time and Timestamps

Having the correct system time is important when you are tweaking features
and weeding out problems. When you need to go beyond the boundaries of
your system to work out mail problems with other postmasters, a correct
timestamp might be exactly what you need to link actions on your mail
servers with those on servers that you do not control.

Postfix keeps careful track of its actions in mail headers. For example,
have a look at this header:

Received: from mail.example.net (mail.example.net [192.0.34.166])
by mail.example.com (Postfix) with ESMTP id 6ED9OE1C65
for <recipient@example.com>; Sat, 7 Feb 2004 10:40:55 +0100 (CET)
Reply-To: sender@example.net
From: Sender <sender@example.net>
To: Recipient <recipient@example.com>
Subject: Keep correct system time
Date: Sat, 7 Feb 2004 10:42:01 +0100

Postfix also makes date-related notes in the mail log. Here are some
sample log messages:

Feb 7 2004 10:40:55 mail postfix/pickup[32610]: 6ED9OE1C65: uid=501 from=<sender>
Feb 7 2004 10:40:55 mail postfix/cleanup[398]: 6ED9OELCES:
message-1d=<20040416020209.7D62343F30@mail.example.com>

Therefore, you should ensure that you get the best time you can. Don’t
trust your system’s built-in timer; not only does the time kept by the Unix
kernel drift over time, but the chips that motherboard manufacturers use in
their battery-backed clocks are cheap and also drift from the real time. You
cannot expect a local time source to be in sync with the times on other mail
SEIvers.

There are two ways to get an accurate clock. You can use NTP (Network
Time Protocol) to get the time over the network, or use a GPRS (worldwide)
or DCF-77 (in most of Europe) time device to get the time over radio.
However, if you don’t have access to these solutions, you can try using

Preparing Your Host and Environment 9

10

NOTE

Syslog

Chapter 2

clockspeed (http://cr.yp.to/clockspeed.html) as a last resort. This application
uses a hardware tick counter to compensate for a persistently fast or slow
system clock. Given a few time measurements from a reliable source, it
computes and compensates for the clock skew.

To use an NTP server; you must run an NTP client on your system (such a client comes
with practically every operating system). To use NTP, you must allow incoming and
outgoing User Datagram Protocol (UDP) packets on port 123 on your fivewall. If you
don’t know how to configure your NTP client, visit the NTP website (http://

www. ntp.org) for more information.

One of the most important places to look for diagnostic messages is the
mail log. Postfix uses the standard Unix logging utility, called syslogd. You
normally configure syslogd through the /etc/syslog.conf file. Here’s a sample
configuration:

Log anything (except mail) of level info or higher.

Don't log private authentication messages!
*.info;mail.none;authpriv.none;cron.none -/var/log/messages
The authpriv file has restricted access.

authpriv.* -/var/log/secure

Log all the mail messages in one place.

mail.* -/var/log/maillog
Log cron stuff
cron.* -/var/log/cron

Everybody gets emergency messages, plus log them on another
machine.

*.emerg *

Save mail and news errors of level err and higher in a

special file.

uucp,news.crit -/var/log/spooler
Save boot messages also to boot.log
local7.* /var/log/boot.log

First, take a look at the first entry, which contains mail.none to keep mail
messages out of /var/log/messages. This is important because you do not want
mail log messages to clutter your general system messages. You can see that
the mail log gets its own entry and file (/var/log/maillog). The hyphen in
front of the filename indicates that syslogd should write the messages to the
file asynchronously, rather than try to force a write to the disk every time a
new log message arrives.

Unfortunately, there are several things that can go wrong with syslogd.
If you don’t seem to be getting any log messages, the very first thing you
should do is make sure that syslogd is actually running. The following
example shows how to run the ps command to look for the daemon.

ps auxwww | grep syslog
root 15540 0.0 0.0 1444 524 ? S May21 18:20 syslogd -m 0 @
root 22616 0.0 0.0 1444 452 pts/o R 18:09 0:00 grep syslog

® The first line of output here shows that syslogd has been running
since May 21.

In addition, make sure that the log files exist and are writable before you
instruct syslogd to write to them. Some implementations of syslogd do not
automatically create files and fail silently if there is a problem with the log
file. The Solaris syslogd is notorious for this.

A very common error is to use spaces instead of tabs to separate the log
type and the log file in the /etc/syslog.conf file. Your syslog.conf should be
written like this:

mail.*<TAB>-/var/log/maillog

Yet another syslogd.conf problem is logging to another network host.
Watch out for an entry like this:

mail.* @loghost

In this case, syslogd is sending all of its logs to loghest, so you should
check the logs on that host instead of the mail server. Make sure that you
actually have such a host. It’s all too common to have logs going to an
unintended host (or into a black hole) due to an errant syslogd.conf file
entry.

Name Resolution (DNS)

NOTE

Before a mail server such as Postfix can transport a message to a remote
destination, it must locate that destination. On the Internet, you find remote
resources with the domain name service (DNS). A nameserver returns the IP
address of a hostname, and conversely the hostname that corresponds to an
[P address.

Well-functioning DNS is critical to MTA performance. The sooner
Postfix can resolve a target IP address, the sooner it can start to communicate
with the remote mail server and transport a message.

Poor hostname lookup performance can become a major bottleneck on large mail hubs.
If your server runs into frroblems, a caching nameserver can help. Set up a caching
nameserver for large mail systems. Be aware that antispam measures can increase the
number of DNS queries that your mail server performs by several factors.

Before you attempt to improve name-resolution performance on your
system, be sure that your operating system correctly resolves remote

Preparing Your Host and Environment 1

hostnames by asking your nameserver for the MX record (see the “MX
Records” section, later in this chapter) of postfix-book.com. Try this command:

$ dig postfix-book.com MX
The output should look like this:

5 <<>> DiG 9.2.2-P3 <<>> postfix-book.com MX

;; global options: printcmd

;5 Got answer:

53 ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 23929

55 flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 2, ADDITIONAL: 2
53 QUESTION SECTION:

spostfix-book.com. IN MX

;3 ANSWER SECTION:

postfix-book.com. 86400 IN MX 10 mail.postfix-book.com. @
33 AUTHORITY SECTION:

postfix-book.com. 86400 IN NS ns3.ray.net. @
postfix-book.com. 86400 IN NS ns.state-of-mind.de.

53 ADDITIONAL SECTION:

mail.postfix-book.com. 86400 1IN A 212.14.92.89
ns.state-of-mind.de. 81566 IN A 212.14.92.88

53 Query time: 58 msec

53 SERVER: 212.18.0.5#53(212.18.0.5)
53 WHEN: Sat Apr 17 03:56:47 2004

33 MSG SIZE 1rcvd: 145

® This line indicates that mail.postfix-book.com is the mail server that
accepts mail for recipients within the postfix-book.com domain.

® These two lines show that ns3.ray.net and ns.state-of-mind.de are the
authoritative nameservers for postfix-book.com.

NOTE The dig (Domain Information Groper) command is not standard on some outdated
platforms. You can get dig with the BIND distribution at ISC (http://ww.isc.org). If
you can 't install dig, you can probably still run the preceding query with host or
nslookup; the latter command is now deprecated.

If the lookup query is successful, Postfix can (in theory) resolve host-
names correctly. If the request is not successful and no hostnames can be
resolved, you need to get DNS sorted out immediately.

One common problem with name resolution is for it not to work
when the server tries to query unavailable nameservers. Check your
/etc/resolv.conf file. Let’s say that it looks like this, where the machine
queries a nameserver on localhost (127.0.0.1), and upon failure it queries
134.169.9.107:

nameserver 127.0.0.1
nameserver 134.169.9.107

12 Chapter 2

DNS for

It’s fine to query localhost if you're running a caching nameserver.
However, if you don’t have one, this request will take a while to time out.

If you find out later that nameserver queries with dig work, but Postfix
cannot find the host (for example, if you see no route to host in the log),
then it’s likely that you're running Postfix chrooted, and therefore, it looks at
a different configuration file to determine settings for name resolution. For
example, if your chroot jail is /var/spool/postfix, Postfix will then look at /var/
spool/postfix/etc/resolv.conf. Make sure that the files are consistent by
running cp -p /etc/resolv.conf /var/spool/postfix/etc/resolv.conf, and then
stop and start Postfix.

Mail Servers

You need to configure your nameserver to tell the rest of the world that your
server is the one that can deliver mail to your domain. Ask your hostmaster
(the person responsible for running the nameserver of your domain) to set
the following entries:

A record
Your mail server must have a fully qualified hostname so that clients can
find out where your server is. An A record maps an FQDN to an IP
address.

PTR record
Your system’s hostname should be reverse-resolvable. Mail servers that
learn your server’s hostname from SMTP communication should be able
to find out if your server is really the one speaking to them.

MX record
MX records let clients know that your server is responsible for mail deliv-
ery for a domain or a certain host.

A Records

The domain name system has different types of records to tell hosts about
resources on the Net. One of the most important is the A record, which maps
hostnames to addresses. A client that sends a hostname to a nameserver
should get the IP address of the host as a response. The following is an
example session that shows that www.example.com is mapped to 192.0.34.166.

$ dig www.example.com A

3 <<>> DiG 9.2.1 <<>> www.example.com

;3 global options: printcmd

;5 Got answer:

53 ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 30122

55 flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 2, ADDITIONAL: 0
33 QUESTION SECTION:

;wWww.example.com. IN A

Preparing Your Host and Environment]3

14

CAUTION

Chapter 2

;3 ANSWER SECTION:

www.example.com. 172627 1IN A 192.0.34.166

33 AUTHORITY SECTION:

example.com. 21427 IN NS b.iana-servers.net.
example.com. 21427 IN NS a.iana-servers.net.

55 Query time: 1 msec
53 SERVER: 127.0.0.1#53(127.0.0.1)
53 WHEN: Sat Apr 17 16:43:40 2004
53 MSG SIZE 1rcvd: 97

PTR Records

The counterpart to the A record is the PTR record, which maps addresses to
hostnames. When the client sends an IP address to a nameserver, the
response should be the hostname corresponding to the address, as in this
example:

$ dig -x 192.0.34.166

; <<>>» DiG 9.2.1 <<¢>> -x 192.0.34.166

;5 global options: printemd

;5 Got answer:

55 ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 37949

55 flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 5, ADDITIONAL: 0
;3 QUESTION SECTION:

;166.34.0.192.1in-addr.arpa. IN PTR

55 ANSWER SECTION:

166.34.0.192.in-addr.arpa. 21374 IN PTR www . example. com.

33 AUTHORITY SECTION:

34.0.192.in-addr.arpa. 21374 1IN NS ns.icann.oxg.
34.0.192.in-addr.arpa. 21374 1IN NS svc00.apnic.net.
34.0.192.in-addr.arpa. 21374 IN NS a.iana-servers.net.
34.0.192.in-addr.arpa. 21374 IN NS b.iana-servers.org.
34.0.192.in-addr.arpa. 21374 IN NS c.iana-servers.net.

55 Query time: 1 msec
53 SERVER: 127.0.0.1#53(127.0.0.1)
53 WHEN: Sat Apr 17 16:44:39 2004
53 MSG SIZE rcvd: 201

Now that spammers plague the Internetl, reverse-resolution of A records with PTR
records is more important than ever. Many postmasters configure their mail servers to
accept mail only if a reverse lookup for the connecting client succeeds.

However, just because other mail servers reject mail based on reverse lookups
doesn’t mean that you should. This often causes problems becawuse many ISPs do not
delegate reverse name lookup to their customers’ nameservers and will not provide
proper information on their server.

CAUTION

MX Records

A nameserver can do more than resolve resources; it can also tell clients
about services offered in a domain. The mail server responsible for a domain
is one of these services. You can configure an MX record to point to the A
record of your mail server.

DNS also has a CNAME, an alias that can point to an A record. For example, you
could configure a CNAME record that points www.example.com at srvol.example.com.
Clients that ask for www.example.com would get srvol.example.com as a response.

Do not have your MX record point to one of these aliases. The most common mail
transport protocol (SMTP) requires that the domain name in an email address be either
an A or an MX record. In the preceding example, you could not point an MX record at
www. example. com, but because srvo1.example.com has an A record, you could point it
there.

You may specify more than one MX record, and you can also prioritize
mail servers so that clients try servers in a specific order. Here’s an example:

$ dig m-net.de MX

3 <<>> DiG 9.2.1 <<>> m-net.de MX

;5 global options: printemd

;5 Got answer:

53 ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 3133

;; Tlags: gr rd ra; QUERY: 1, ANSWER: 3, AUTHORITY: 2, ADDITIONAL: 0
55 QUESTION SECTION:

;m-net.de. IN MX

55 ANSWER SECTION:

m-net.de. 7200 IN MX 50 mail-in.m-online.net. @
m-net.de. 7200 IN MX 100 mx01.m-online.net. @
m-net.de. 7200 IN MX 100 mx02.m-online.net.

35 AUTHORITY SECTION:

m-net.de. 7200 IN NS ns2.m-online.net.

m-net.de. 7200 IN NS nsi.m-online.net.

55 Query time: 27 msec
53 SERVER: 127.0.0.1#53(127.0.0.1)
;3 WHEN: Sat Apr 17 17:07:05 2004
33 MSG SIZE 1rcvd: 140

©® mail-in.m-online.net has the highest priority because it has the lowest
number (50). Clients will try to deliver mail to this mail server first.

® mx01.m-online.net and mx02.m-online.net have the second-highest
priority (100) by number. Clients will try either one of these if the highest-
priority mail exchanger is unavailable.

Preparing Your Host and Environment 15

MAIL SERVER FOR A SINGLE
DOMAIN

A]

-

\"? Configuring Postfix for a single domain
\ takes a matter of minutes. No matter what
‘ configuration you plan to set up, starting with
the following single-domain configuration should
always be your first production step; it will prove that
Postfix works in its most simple setup.

This chapter will introduce you to the minimum configuration
parameters that Postfix needs in order to run, and it will show you how to
map long email addresses to short usernames in a single domain setup.

The Minimum Configuration

We will set up Postfix to accept email for a single domain, and Postfix should
deliver emails with different mail addresses within this domain to different
mailboxes.

18

Postfix should handle mail for this one domain only, and we’ll show the
minimum set of configuration changes that need to be applied against a
vanilla installation. A typical network architecture for a minimum config-
uration is shown in Figure 3-1.,

LAN

Workstation Mail server

Mail server

Workstation Mail server

Figure 3-1: A single-domain Postfix network

The mail server is connected permanently to the Internet and has a static
IP address. Forward (A record) and reverse DNS records that match the IP
address of the mail server have been provided.

A basic setup has basic requirements. Make sure you have properly
configured your host, as described in Chapter 2.

Configuring Postfix

Chapter 3

In this chapter, we will configure Postfix to receive mail for a single domain.
Our machine will be named mail.example.com, and our domain is example.com.
We will follow these steps:

Configure Postfix to greet mail clients with the correct hostname.

o

Configure Postfix to accept mail for the domain example.com.

3. Configure Postfix to append example.com to mail sent with a bare
username.

4. Configure Postfix to deliver mail addressed to root to a different
mailbox.

5. Configure Postfix to deliver mail sent to email addresses to the
appropriate usernames.

6. Set permissions to make Postfix relay email from your network.

Setting the Hostname in the smtpd Banner

When mail clients and servers meet, they greet each other with their DNS
hostnames. The first thing we do is to configure the name that Postfix will
use when it introduces itself to a mail client. If your hostname is the same as

CAUTION

the name you want Postfix to use to greet mail clients, then you are lucky:
there is nothing to change. On the other hand, if your system’s hostnanme is set
to www.example.com, and you run Postfix on the same machine and want it to
greet mail clients with mail.example.com as the hostname, you can easily
achieve that.

When Postfix transports messages to other mail servers, it acts as a mail client. While
introducing itself to the mail server; it uses the myhostname parameter as the HELO
name by defaull. Some mail servers are configured to veject mail if the HELO name and
the reverse-resolvable FQDN of the server do not maich. Either make sure that the host-
name you set for Posifix matches the hostname of your server’s IP, or set smtp_helo_name
to match your official FQDN in the DNS namespace.

There are two ways to achieve a different hostname, either by setting the
myhostname parameter or by setting the mydomain parameter.

Setting myhostname

Setting myhostname is done by editing /etc/postfix/main.cf. Use your favorite
editor to open the file and search for myhostname. Then add your intended
hostname as the FQDN hostname:

myhostname = mail.example.com

As soon as you have set myhostname, Postfix is able to automatically derive
mydomain. Postfix simply strips off everything up to and including the first dot.
Because we have set myhostname to be mail.example.com, Postfix will derive
mydomain to be example.com—just what we need.

Setting mydomain

Instead of setting myhostname, you can set only mydomain. This alternative can be
very handy if you have a configuration that needs to be copied to multiple
machines.

mydomain = example.com

As soon as you have set mydomain, Postfix is able to create myhostname by
concatenating the output from the uname -n command of this specific host
with mydomain. This means that if your main.cf only sets mydomain explicitly, and
you copy the file to another host within the same domain (example.com in our
example), Postfix will complete the correct hostname by itself.

Setting the Domain Mail Is Accepted For

Postfix will relay host for local clients, meaning it will accept mail for
domains for which it is not configured as final or relay destination. In a
single-domain setup, all you need to do is to set the mydestination parameter.
(Procedures for setting Postfix up to relay mail for more than one domain
are discussed in Chapters 13 and 14.)

Mail Server for a Single Domain]9

20

NOTE

Chapter 3

When you set mydestination, you can hard-code the destination (for example,
mydestination = mail.example.com) or you can use the values from parameters

that have already been set in Postfix using the $parameter notation. Hard-coding
makes it awkward to change configurations because there are many parameters lo edit,
and considering typos and other potential human errors, this is a failure-prone setup.
We do not recommend hard-coding.

Our goal in this chapter is to make Postfix accept any mail that is
destined for example.com. Because we already have provided this value in
mydomain, we can simply refer to it when we set mydestination in main.cf:

mydestination = $mydomain

If you want to take this further and you want Postfix to accept mail for
the hostname you have set in myhostname, then you simply add that parameter
to mydestination:

mydestination = $mydomain, $myhostname

As you can see, values are added in a comma-separated list, and the list
ends without a comma. To take this another step further, you can also add
www . example.com and ftp.example.com by expanding the list with a combination
of host and $mydomain:

mydestination =
$mydomain,
$myhostname,
www. $mydomain,
ftp.$mydomain

This example also introduces another form of notation. If you need to
add many values to a parameter, you can set each on a separate line, but each
subsequent line must start with some whitespace (otherwise Postfix will not
recognize the value). You can verify this in a shell window by checking the
output of postconf mydestination, just to be sure.

This format can be used for any parameter within Postfix that takes more
than one value.

Setting the Domain to Be Appended to Outgoing Messages

When a local service, such as cron or at, or a command-line mail client sends
mail, it usually does not supply a complete sender or recipient address, but

just bare usernames. Although this is okay as long as the recipient is local, it

becomes a problem when the message is sent off to another host. It takes
quite some time to track which host the mail came from, and the receiving
mail server will not be able to bounce the mail back if the mail’s recipient
does not exist on the target host.

NOTE

Postfix provides a parameter whose value is appended to senders or
recipients that are specified in a non—fully qualified form: myorigin. Again, we
can reuse parameters that already have been set within main.cf:

myorigin = $mydomain

As soon as you have enabled this setting, Postfix will append the value in
mydomain to any address that has not been fully qualified. For example, a
message produced by a cron job and sent as root would be set to
root@$mdomain, which in our case would become root@example.com.

If you do not set myorigin manually, it will default to myhostname, which
comes in handy if you run various hosts whose root messages should be
delivered to one role account at a central server. This way you will always
know the hostname the message came from; a cron job sent as root, for
example, would be modified by Postfix to be sent as root@myhostname, which
in our case would be root@mail.example.com.

Mapping Mail Sent to root to a Different Mailbox

Postfix will deliver mail to any local user directly, even root, but Postfix won’t
give root privileges to external programs during delivery. This means you
cannot use local delivery agents (LDAs) such as procmail or maildrop to
deliver mail for root, because Postfix won’t run those programs as root, but
instead will run them with default_privs, which default to the privileges of the
user nobody. This is a security precaution designed to never compromise the
superuser account by running a vulnerable external program as root. This
does not mean that it is impossible to deliver mail that is meant for root,
though. The solution is to create a different user on your machine with
normal, low privileges, and have mail meant for root delivered to this
account instead.

In our examples we use admin as the account from which we start
administration of our host.! To make Postfix deliver mail for root to admin,
simply open /etc/postfix/aliases, which the Postfix installation installs by
default,? and change postfix to admin so that it reads as follows:

root: admin

If you choose to use admin for this purpose, you must also delete the aliases file entry
that sends admin mail to root. Otherwise you will create a loop.

'\]lm recently a virus/worm used the sender address adnin@$mydomain to spread itself through the
Internet. The name adnin may not be a good choice for a user account.

*The aliases file that comes along with Postfix contains all the addresses that are required by
various RFCs on a mail server. The aliases file itself will give you hints about where to find more
information on these requirements.

Mail Server for a Single Domain 2]

22

CAUTION

Chapter 3

Once you have edited /etc/postfix/aliases® and added the username you
prefer, you must create an indexed version, usually /etc/postfix/aliases.db,
in order to speed up the lookup process for Postfix. This is done by running
either postalias on the /etc/postfix/aliases or newaliases without parameters.
To get used to the tools that Postfix brings along, run this command:

postalias hash:/etc/postfix/aliases

Postfix will not use any changes in your aliases file until you have updated the
indexed version, as it only reads from that file.

Starting Postfix and Testing Mail Delivery to root

It’s time to run the first tests. In the previous sections we added or changed a
number of settings, and if we go further without verifying that things are
okay to this point, we will probably have trouble if we need to trace an error.

Start Postfix

Before we start sending mail, we must start Postfix. All you need to enter is
postfix start and Postfix will reply with the following message:

postfix start
postfix/postfix-script: starting the Postfix mail system

If you get the following message, then Postfix was already up and
running:

postfix start
postfix/postfix-script: fatal: the Postfix mail system is already running

If Postfix was running when you made changes to its configuration, those
changes won’t have been noticed by Postfix. You could stop and start Postfix
to make it reread the configuration, but there is a far more elegant way of
doing this. Simply type postfix reload:

postfix reload
postfix/postfix-script: refreshing the Postfix mail system

This way, Postfix reloads only the configuration, which takes less time
and will not interrupt Postfix’s service to the clients.

*The input and output file formats are expected to be compatible with Sendmail version 8 and
to be suitable for use as NIS maps.

Send Test Mail

Now that Postfix is started, we can run the first test: deliver mail sent to root

to its mailbox. There are two very simple ways to do this: send mail from the
command line, or send mail from a telnet session. Both approaches have the
advantage of excluding the influence of other applications, such as complex
GUI mail clients, and letting you focus on Postfix, in case an error turns up.

Sending Mail Using Postfix’s sendmail Binary

The most simple, reliable test is to use sendmail to test basic functionality,
because no components outside of Postfix will be involved. This command-
line utility is called sendmail for backward compatibility—many applications
on Unix systems that send email have the path to the sendmail binary, /usr/
sbin/sendmail or /usr/lib/sendmail, hard-coded in them. This is also where
Postfix puts its own sendmail binary, in order to offer a smooth switch
transition from Sendmail to Postfix.*

Type the following command to send mail to root:

echo foo | /usr/sbin/sendmail -f root root &&% tail -f /var/log/maillog

This will send the text foo to root with an envelope sender of root, and it
will open your mail log to check on its delivery status:

Aug 20 21:56:42 mail postfix/pickup[5160]: 848AD7247: uid=0 from=<root>

Aug 20 21:56:42 mail postfix/cleanup[5340]: 848AD7247:
message-1id=<20030820195642.848AD7247@mail.example. com>

Aug 20 21:56:42 mail postfix/ngmgr[5161]: 848AD7247:
from=<root@mail.example.com>, size=306, nrcpt=1 (queue active)

Aug 20 21:56:42 mail postfix/local[5343]: 848AD7247:
to=<admin@mail.example.com>, orig_to=<root>, relay=local, delay=0,
status=sent (mailbox)

As you can see from the mail log, Postfix was able to send the message to
the mailbox. You can check this by running less /var/mail/admin:

From root@mail.example.com Wed Aug 20 21:56:42 2003
Return-Path: <root@mail.example.com>

X-Original-To: root

Delivered-To: admin@mail.example.com

Received: by mail.example.com (Postfix, from userid 0)

id 848AD7247; Wed, 20 Aug 2003 21:56:42 +0200 (CEST)
Message-Id: <20030820195642.848AD7247@mail.example.com>
Date: Wed, 20 Aug 2003 21:56:42 +0200 (CEST)

From: root@mail.example.com (root)
To: undisclosed-recipients:;

foo

1 There’s one hook: If you migrate from Sendmail to Postfix, you may end up with two sendmail
binaries: The one that Postfix installed and the one that’s left over from the real Sendmail. You
must only use the one Postfix installed.

Mail Server for a Single Domain 23

NOTE [fyou are unsure where to look for the mailbox, type postconf mail_spool_directory.
This will tell you where Postfix delivers the mail.

So far so good. Postfix is able to deal with its own applications.

Sending Mail from the Command Line

Next we will verify that we are able to send mail from an MUA on localhost to
root. This is the second-simplest test case there is:

mail admin
Subject: Test from command line
This is a test mail from command line.

TIP In case you are not familiar with the mail program, heve’s how to use it:

1. Entermail on the command line.

2. Enler the name of the account that you want to send mail to, and frress RETURN.
3. When prompted, enter a subject and press RETURN.

4. Enter the text of the message.

5. To send the message, start a new blank line, enter a single period (.), and press

RETURN.

To verify that the mail was sent, run less /var/mail/admin once more:

less /var/mail/admin

From root@mail.example.com Wed Aug 20 20:55:11 2003

Return-Path: <root@mail.example.com>

X-Original-To: admin

Delivered-To: admin@mail.example.com

Received: by mail.example.com (Postfix, from userid o)
id 37DE07247; Wed, 20 Aug 2003 20:55:11 +0200 (CEST)

To: admin@mail.example.com

Subject: Test from command line

Message-Id: <20030820185511.37DE07247@mail.example.com>

Date: Wed, 20 Aug 2003 20:55:11 +0200 (CEST)

From: root@mail.example.com (root)

This is a test mail from command line.

The message was delivered, and we have proven that local users can send
mail to other local users. Now it’s time to check whether mail can be sent to
admin from a remote user.

Sending Mail through a Telnet Session

The simplest mail client is a telnet client that connects to the SMTP port
(port 25). We'll be doing it the hard way, because we want to exclude side
effects that might be introduced by other more comfortable (and more

buggy) mail clients. Here’s how you send a mail message with telnet.

24 Chapter 3

telnet mail.example.com 25
Trying 172.16.0.1...

Connected to mail.example.com.
Escape character is '*]'.

220 mail.example.com ESMTP Postfix
HELO client.example.com

250 mail.example.com

MAIL FROM: <test@client.example.com>
250 Ok

RCPT TO: <root@example.com>

250 0Ok

DATA

354 End data with <CR><LF>.<CR><LF>
Test mail from a telnet session.

.

250 Ok: queued as 69F1A7247
QUIT
221 Bye

And for the last time, check delivery with less /var/mail/admin:

From test@client.example.com Wed Aug 20 21:25:16 2003
Return-Path: <test@client.example.com>
X-Original-To: root@example.com
Delivered-To: admin@mail.example.com
Received: from client.example.com (mail.example.com [172.16.0.1])
by mail.example.com (Postfix) with SMTP id 2D89A7251
for <root@example.com>; Wed, 20 Aug 2003 21:24:59 +0200 (CEST)
Message-Id: <20030820192459.2D89A7251@mail.example.com>
Date: Wed, 20 Aug 2003 21:24:59 +0200 (CEST)
From: test@client.example.com
To: undisclosed-recipients:;

Test mail from a telnet session.

This message was delivered too, and we have proven that Postfix accepts
messages that are sent from remote users to local users and that Postfix is
able to deliver them.

Mapping Email Addresses to Usernames

Now that we have successfully set up the basics, it is time to configure email
addresses that are a little more sophisticated. By default, Postfix will only
deliver email to usernames on your mail server. However, usernames (such
as yo000247), which are also often used for authentication when a user wants
to retrieve mail, rarely match the names people use when they communicate
with each other (such as john.doe@example.com). To make Postfix receive and
deliver email for names used in the real world to existing accounts, you need
to create aliases that point to the destinations Postfix is to deliver the
messages to.

Mail Server for a Single Domain 25

26

NOTE

NOTE

Chapter 3

Creating Aliases

Let’s assume that you have a new colleague at Example Inc. whose name is
John Doe, and it’s your job to provide him with an email account. John works
in the sales department, and he is supposed to receive mail addressed to
john@example.com, john.doe@example.com, and doe@example.com in one mailbox, as
well as any mail that is sent to sales@example.com, where he works together with
Silvia and Karol, who both receive any mail that goes to <sales@example.com>.

John already has been provided the account john, with which he can access

his files.

What you must do now is map these alias names (john@example.com,
sales@example.com, and so on) to his local username. This is done by creating
entries in /etc/postfix/aliases. In John's case, you only have to create three
entries, although four mappings are required. The one you don’t have to
create is <john@example.com>, as any mail that is sent to that address will be
delivered to the username john, which is John’s account. You would need to
add the following entries to /etc/postfix/aliases:

users

john.doe: john

doe: john

groups

sales: silvia, karol, john

To complete your task, you will need to run either postalias hash:/etc/
postfix/aliases or newaliases to update your aliases.db file.

From the preceding listing, you can see that you must specify a localpart on the left
side, followed by a colon and the username on the right side (the localpart of an email
addess is everything before the @ sign). Every alias entry can consist of one or more
values separated by commas. You may specify either usernames or email addresses.
Email addresses can point to other users on different hosts, which means that you could
accept mail for a user at your mail server and have it delivered to a totally different
address. Further information can be found in the aliases file ilself, or you can run man
5 aliases.

Once you have added as many aliases as you need, it is time to run tests
for those mailboxes, just like the test we made before.

Setting Permissions to Make Postfix Relay Email from Your Network

Open relays are a postmaster’s nightmare. Any Postfix installation is relay safe
by default. In its default configuration, Postfix will relay only messages from
IP addresses inside your network. Postfix knows what the IP addresses of your
network are by checking the interfaces you have configured for your server.

On a Linux servey, Postfix will trust all the subnels the machine’s interfaces are in.
Run ifconfig on Linux to get a list of all subnets Postfix will trust by default.

NOTE

The default settings work as long as your server and the hosts that use
Postfix on it are within the same network range. Chances are that you will
need to alter these settings when your network grows or gets more complex.
You could, for example, decide to run Postfix in a DMZ within an IP range
that differs from the one your internal hosts use. In that situation, Postfix
likely would not allow your clients to relay mail to foreign destinations, and
you would need to configure it to establish correct relay permissions.

Expanding or restricting relay permissions can be done either gener-
ically, by choosing a mynetworks_style that suits your network topography,
or individually, by manually specifying a list of IP addresses or ranges in
Classless Inter-Domain Routing (CIDR) notation (see Appendix C) for
mynetworks.

Both methods require you to change the configuration in main.cf
manually. The administration effort is reasonable for static IP ranges,
because they do not change often.

The manual administration effort is not reasonable if you want to permit relaying for
hosts with dynamic IP addresses, which change their IP address regularly. Applying
changes manually quickly becomes a tedious task. Chapter 16 explains and shows how
to automate this process.

Generic Network Relay Permissions

Generic relay permissions are set with mynetworks_style by choosing the class,
subnet, or host option.

class
The class option will make Postfix expand relay permissions to the whole
IP class A/B/C networks the server was configured for. For example, if
you ran Postfix on a machine with the IP address 192.0.34.166, and you
enabled mynetworks_style = class, Postfix would trust the whole class C
network, 192.0.34.0/24, and would permit relaying for hosts within this
range.

subnet
The subnet option will make Postfix restrict relay permissions to exactly
the subnetworks for which you configured the server’s network inter-
faces. For example, if you ran Postfix on a machine with the IP address
192.0.34.166/30, and you enabled mynetworks_style = subnet, Postfix would
trust all the hosts exactly within this range.

host

The host option will make Postfix restrict relay permissions to the
server you run Postfix on. For example, if you ran Postfix on a machine
with the IP addresses 192.0.34.166/30 and 127.0.0.1, and you enabled
mynetworks_style = host, Postfix would trust the hosts only (the IP
addresses 127.0.0.1 and 192.0.34.166).

Mail Server for a Single Domain 2?

28

NOTE

Chapter 3

Individual Relay Permissions

Individual relay permissions are set with mynetworks by creating a comma-
separated list of all the hosts and networks, in CIDR notation, for which
Postfix is to relay messages.

For example, if you ran Postfix in a network that connected two locations
(192.168.100.0/24 and 192.168.200.0/24), and you wanted it to permit relaying
for all the hosts of the DMZ it stands in (10.0.0.0/30), and also for any of its
own local interfaces (127.0.0.0/8), you would specify a list like this:

mynetworks = 127.0.0.0/8, 192.168.100.0/24, 192.168.200.0/24, 10.0.0.0/30

If you have many IP addresses and ranges, this kind of listing can become quile
complex within main.cf. Alternatively you can point mynetworks to a separate file
(mynetworks = hash: /etc/postfix/mynetworks) and create the complex listing there.
This file may not contain networks in CIDR notation, though. If you need CIDR
notation, use mynetworks = cidr: /etc/postfix/mynetworks.

DIAL-UP MAIL SERVER FOR A
SINGLE DOMAIN

%’f/ Setting up a mail server to use a dial-up
connection requires only minor changes to
\‘ a basic Postfix configuration. Dial-up access to
the Internet can cost money (especially in Europe,
where there are connection fees), so you may not want
to run a mail server that initiates a connection for each

outgoing message. Instead, you can have the server
collect a certain number of messages before sending

them, to make the dial-up process cost-effective.

When a dial-up connection goes active, you will want Postfix to relay the
queued messages through your ISP’s relay host. In addition, you may need to
support SMTP authentication. You should also automatically retrieve
messages that could not be delivered to local users while the server was
offline.

30

NOTE

Chapter 4

The differences between a dial-up server and the basic Postfix
configuration are as follows:

Connection
Because the mail server is only temporarily connected to the Internet, its
IP address likely changes with every new connection.

DNS resolution
The server cannot look up hostnames when it is offline. Also, the server’s
own DNS information changes with every new connection, so correct
reverse resolution might not be available.

Delivery restriction
Your ISP requires you to use its relay host, and furthermore, the relay
host may only relay messages for authenticated users.

Mail retrieval
Outside mail servers cannot deliver messages directly to your server
because your server isn’t usually online. Your ISP should handle this with a
mail server that holds your mail. When a message is sent to you, your ISP’s
mail server accepts and stores it until you use either a POP/IMAP client or
fetchmail to retrieve the mail and hand it down to your local MTA.

Mail retrieval with POP/IMAP and fetchmail (http://catb.org/~esr/fetchmail) is
not described in this book.

Figure 4-1 depicts a typical dial-up network. One or more machines
reside in a private network, and any machine that needs to access Internet
services uses your dial-up gateway, which also runs your Postfix server.

LAN

Workstation |7

Gaeway/ |l 1 |l o
Mail server [(Mail reloy) [

Workstation

Figure 4-1: A typical dial-up network

You will need to perform the following steps to configure Postfix as a
dial-up mail server for a single domain. These steps are described in the
following sections.

Disable DNS resolution.
Check relay permissions,
Set the relay host.

BB on: hay bt

Defer message transport.

NOTE

5. Trigger message delivery.
6. Configure relay permission for the relay host.

This scenario builds on the setup in Chapter 3. You need to configure and test your
server as described in that chapter. In addition, you should have already configured
your server’s dial-up procedure (http://www.ibiblio.org/pub/Linux/docs/HONTO/
other-formats/html_single/PPP-HOWTO.html).

Disabling DNS Resolution

NOTE

When Postfix receives a message to be delivered to a remote domain, it must
look up the MX or A record for the destination domain. Name lookups on
DNS servers normally involve a query leaving your network, meaning that the
server must connect to the Internet.

Because you want to keep dial-up connections to a minimum, you should
instruct Postfix not to look up DNS data until the server goes online. In fact,
Postfix should never look up the remote domains, because you want it to
send messages through your ISP’s relay host, which can figure out where
to send the message itself.

To prevent Postfix from looking up DNS data, set the disable_dns_lookups
parameter in your main.cf file:

disable_dns_lookups = yes

This suppresses DNS MX /A lookups in the smtp(8) client, and A
lookups in the Imtp(8) client; in both cases gethostbyname() is used instead.
You’ll need to keep this in mind when you set the relay host later in this
chapter.

After setting the disable_dns_lookups parameter, reload Postfix to activate
the change.

This setting does not disable DNS for the smtpd server program. Parameters such as
reject_unknown_sender_domain and permit_mx_backup (see Chapter 8) still work,
regardless of the value of disable_dns_lookups.

Adjusting Relay Permissions

NOTE

A dial-up server normally has a dynamic IP address that changes whenever
the server connects to the Internet. Therefore, you cannot control relay
permissions for the dial-up server’s network interface unless you manually set
relay permissions every time your server goes online. Also, who in the
Internet would want to relay through a dial-up host other than a spammer?

Fuven if your host has only periodic connectivity, you should never allow relay access for
the entive Internet. One of the author’s dial-up mail servers received 56 (failed) relay
attempts within a 30-day period. That's roughly two a day, and the machine wasn’t
even online 24/ 7! Fortunately nothing happened because it was relay safe.

Dial-up Mail Server for a Single Domain 31

32

CAUTION

Unless you want certain users from the Internet to use your Postfix server
as a relay for some bizarre reason (see Chapter 16), you should restrict
relaying to your local network interface and the loopback interface in your
main.cf file. Here’s how you might do it if your private network were
192.168.0.0/24:

mynetworks = 192.168.0.0/24, 127.0.0.1/8

Don’t use mynetworks_style = class to control relay permissions for a dial-up server.
This setting uses all IP addvress ranges configured for your network interfaces, includ-
ing the network that your server dials in to. Therefore, every client in your ISP’s nei-
work would be able to use your mail server to relay messages!

As before, use postfix reload to reload the configuration.

Setting the ISP Relay Host

NOTE

Before you perform this particular configuration step, you need to deter-
mine your ISP’s mail relay host. Many ISPs block outgoing connections on
TCP port 25 (the SMTP port) for dial-up customers, because spammers
abuse dial-up service trial offers.

In addition to your ISP’s own requirements, there are plenty of good reasons not to have
Postfix deliver messages directly to the final destination. For example, because a signifi-
cant amount of spam originates from dial-wp machines, blacklists have started to list
whole blocks of dial-up networks (analog, ISDN, and DSL) that known spammers use.
Even if your message is not spam, a remote MTA might reject it on the basis of a DUL
(dial-up user list), simply because your mail originates from an IP address range
belonging to a dial-up pool.

For example, if the relay host were relay.example.com, you would use
this line:

relayhost = [relay.example.com]

Placing the relay host’s name or address in square brackets disables MX
lookups for that host.
After the customary postfix reload, you're ready to move on.

Deferring Message Transport

Chapter 4

At this point, Postfix has a configuration that delivers mail to a relay host
without DNS lookups, avoiding any open relay issues. However, the server
still dials up the ISP any time it receives outgoing mail destined for remote
networks. To stop this behavior and make Postfix queue outgoing messages
instead, edit main.cf and tell Postfix to defer the SMTP transport method
with the defer_transports parameter, as shown in the following example.

defer_transports = smtp

NOTE [fyou use UUCP instead of SMTP, you can substitute uucp for smtp.

As usual, execute postfix reload as root after after making this change.
After the reload, Postfix will no longer deliver messages via SMTP until the
defer_transports parameter changes or vanishes. The next section shows how
to use this feature to deliver the messages when your server dials up the ISP.

Triggering Message Delivery

The only remaining task is to instruct Postfix to deliver all queued mail via
SMTP when it connects to the Internet. All you have to do is automatically
reconfigure Postfix when the server goes online and reverting to the original
configuration afterward. You can trigger this with scripts that the system runs
after establishing a connection. On a Linux system running PPP, these
scripts often reside in /etc/ppp/ip-up.d.

Create a script named postfix in this directory to run afer the script that
sets resolv.conf. The postfix script looks like this:

start or reload Postfix as needed

if Postfix is running chrooted, copy resolv.conf to the resolv.conf Postfix
uses

cp -p /etc/resolv.conf “postconf -h queue_directory’/etc/resolv.conf @

unset defer_transports and make Postfix note it

postconf -e "defer_transports ="

postfix reload

Force a queue run to unload any mail that is hanging around

postfix flush

® The line involving resolv.conf is relevant only if Postfix is running in a
chroot jail. It assumes that the server alters its resolv.conf file when dialing
up. Postfix also needs to know the current nameservers, so this command
copies the new version to the chroot jail, where Postfix can find it.

Similarly, when the machine goes offline, you want to restore the old
queuing behavior. Create a script named postfix in /etc/ppp/ip-down.d to run
when the connection goes down (again, the line with resolv.conf is necessary
only in a chroot jail):

start or reload Postfix as needed

copy resolv.conf to the resolv.conf Postfix uses (only if Postfix is chrooted)
cp -p /etc/resolv.conf “postconf -h queue_directory /etc/resolv.conf

set defer_transports and make Postfix note it

postconf -e "defer_transports = smtp"

postfix reload

Dial-up Mail Server for a Single Domain 33

34

Configuring Relay Permission for a Relay Host

Chapter 4

Many free mail providers, especially those that offer SMTP client access
along with a web mail interface, require extra validation before they permit
your client to use their relay host. This is necessary because most of their
users connect from other access providers (and, therefore, from other IP
ranges than their own), so they cannot set relay permissions based on IP
addresses. If mail providers opened their mail servers to a wide range of IP
addresses, they would effectively become open relays, and it would be a
matter of minutes before spammers started to use them. Therefore, mail
providers require POP-before-SMTP or SMTP authentication.

POP-before-SMTP

A provider that requires POP-before-SMTP (see Chapter 15) accepts outgoing
relay messages only if you retrieve incoming mail before sending any new
messages. In other words, your machine must authenticate itself with the
provider’s POP3 or IMAP4 server before sending anything. When your host
authenticates, the provider notes your current IP address and allows that IP
address to send messages through its relay within a certain time window.

Postfix is an MTA; it does not speak POP3 and IMAP4. Therefore, Postfix
cannot perform POP-before-SMTP by itself. This is not a problem, because
you can easily configure fetchmail (http://catb.org/~esr/fetchmail) to do it
for you. Fetchmail is a small command-line utility that retrieves mail from
almost any kind of mail system on the Internet. To use it in a POP-before-
SMTP setup, perform these steps:

Configure Postfix as described in this chapter.

I

Follow the instructions in the fetchmail documentation to create a work-
ing configuration.

3. Add a trigger that calls fetchmail before reconfiguring Postfix in your
/etc/ppp dial-up script.

This way, your server runs fetchmail (a POP/IMAP client) at least once
before running the Postfix (SMTP) dequeuing phase, so your mail provider
will accept your outgoing messages.

SMTP Avthentication

A provider that requires SMTP authentication allows your client or server to
relay messages through their relay host only if it has authenticated itself
during the SMTP dialog. To use SMTP authentication in Postfix, you don’t
need any extra services or programs, so it is preferable to POP-before-SMTP
(especially in cases where you want to send messages but not retrieve
anything).

You can find extensive information on how to configure client-side
SMTP authentication for Postfix in Chapter 16.

ANATOMY OF POSTFIX

This chapter describes how Postfix works,
‘b/ what each piece of the system does, and
how these components relate to each
other. After going through this material, you
should have an understanding of Postfix as a
whole, so that you can you focus on individual goals.

Postfix consists of a small number of programs that interact with user
processes (sendmail, postqueue, postsuper, and so on) and a larger number of
programs that run in the background. Only the programs that run in the
background are controlled by the master daemon. The master daemon’s job
is to determine what work there is to do and dispatch the appropriate
program to do the work. This modular design allows for a higher level of
security because each program runs with the lowest privilege set needed to
fulfill its task.

You can think of the whole Postfix system as a router. This may sound
strange at first, but remember that a router’s job is to look at an IP packet,
determine the destination IP address (and possibly the source), and then
choose the right interface to route the packet toward its destination. Postfix
does the same thing with mail (see Figure 5-1), looking at the destination of

36

Chapter 5

a message (the envelope recipient) and the source (the envelope sender)
to determine the application that will move the message closer to its final
destination.

Envelope Postfix Envglppe
sender recipient

Figure 5-1: Postfix works like a router

Now let’s look more closely at the system. A real router usually accepts IP
packets from multiple interfaces, routing them back out through the inter-
faces. The same is true for Postfix; it accepts messages from multiple sources
and then passes the mail on to multiple destinations. A message’s origin may
be the local sendmail binary or an SMTP or QMQP connection. The destina-
tion can be a local mailbox, outgoing SMTP or LMTP, a pipe into a program,
and more. Figure 5-2 shows this view of Postfix.

N

SMTP
SMTP
g
QMQpP ——————»| Postfix
local s S—
ipe
sendmail i

pal

Figure 5-2: A Postfix “router” accepts and establishes all kinds of connections

The origin and destination of a message seem clear enough, but how
does Postfix pick a delivery method given a destination? A router uses
routing tables that match IP addresses to networks to determine a path.
Postfix does the same thing with email addresses.

In Postfix, lookup tables are called maps. Postfix uses maps not only to
find out where to send mail, but also to impose restrictions on clients,
senders, and recipients, and to check certain patterns in email content,
Figure 5-3 shows where the maps—to name but a few, aliases, virtual, and
transport are shown—fit in.

SMTP
SMTP
——— UUCP \ LMTP /
/ Postfix
QMQP local
—_— \
ipe
sendmail PIp
transport virtual aliases

Figure 5-3: Maps are the lookup tables of the Postfix “router”

Postfix Daemons

NOTE

Figure 5-4 shows an overview of the Postfix daemons and how they fit
together.

Postfix is constantly under development. The following list of daemons is based on
Postfix 2.1.

master

The master daemon is the supervisor of Postfix, and it oversees all
other Postfix daemons. The master waits for incoming jobs to be
delegated to subordinate daemons. If there is a lot of work to do,
the master can invoke multiple instances of a daemon. You can
configure the number of simultaneous daemon instances, how often
Postfix can reuse them, and a period of inactivity that should elapse
before stopping an instance.

If you have ever worked with the inetd server on a Unix machine,
you will find many similarities between it and the master daemon.

bounce and defer
A mail transfer agent must notify the sender about undeliverable mail.
In Postfix, the bounce and defer daemons handle this task, which is trig-
gered by the queue manager (qmgr). Specifically, the two event types that
cause sender notices are unrecoverable errors and a destination that is
unreachable for an extended period of time. The latter case results in a
delay warning.

Anatomy of Posifix 37

38

Chapter 5

maildrop

sendmail
\
anqpd smtpd | anvil pickup
[- J
“ Yy v
1 trivial-
caeanup o rewrite
Y
incoming
Y
active deferred
Y
bounce/ - L
aFar - qmgx resolve
/ Y }
pipe local 1mtp
\ Y
smtp virtual

Llegend

process

miioe |

Figure 5-4: The relationships between the Postfix daemons

error
The error daemon is a mail delivery agent like local or smtp. It is a deliv-
ery agent that always causes mail to be bounced. Usually you don’t use it
unless you configure a domain as undeliverable by directing mail to the
error delivery agent. If a mail is sent to the error daemon it will inform
the bounce daemon to record that a recipient was undeliverable.

trivial-rewrite
The trivial-rewrite daemon acts upon request by the cleanup daemon in
order to rewrite nonstandard addresses into the standard user@fqdn form.

This daemon also resolves destinations upon request from the queue

manager (qmgr). By default, trivial-rewrite distinguishes only between
local and remote destinations.

showq
The showq daemon lists the Postfix mail queue, and it is the program
behind the mailq (sendmail -bp) command. This daemon is necessary
because the Postfix queue is not world-readable; a non-setuid user pro-
gram cannot list the queue (and Postfix binaries are not setuid).

flush
The flush daemon attempts to clear the mail queue of pending and
deferred messages. By using a per-destination list of queued mail, it
improves the performance of the SMTP Extended Turn (ETRN) request
and its command-line equivalent, sendmail -qR destination. You can main-
tain the list of destinations with the fast_flush_domains parameter in the
main.cf file.

qmgr
The gmgr daemon manages the Postfix queues; it is the heart of the Post-
fix mail system. It distributes delivery tasks to the local, smtp, Imtp, and
pipe daemons. After delegating a job, it submits queue file path-name
information, the message sender address, the target host (if the destina-
tion is remote), and one or more message-recipient addresses to the dae-
mon it delegated the delivery task to.

The qmgr design is a good example of how Postfix handles jobs to

avoid resource starving and to maintain stability. Two things stand out:

¢ gqmgr maintains a small active queue, with just a few messages
pending for delivery. This queue effectively acts as a limited win-
dow for the potentially larger incoming and deferred queues, and it
prevents gngr from running out of memory under a heavy load.

¢ If Postfix cannot immediately deliver a message, gqngr moves the
message to the deferred queue. Keeping temporarily undeliverable
messages in a separate queue ensures that a large mail backlog
does not slow down normal queue access.
qmgr uses the bounce and error daemons to bounce mail for recipients
listed in the relocated table that contains contact information for users
or domains that no longer exist on the system.

Anatomy of Posifix 39

40

NOTE

Chapter 5

proxymap

Postfix client processes can get read-only access to maps through the
proxymap daemon. By sharing a single open map among many Postfix dae-
mons, proxymap circumvents chroot restrictions and reduces the number
of open lookup tables.

spawn

The spawn process creates non-Postfix processes on request. It listens on a
TCP port, Unix domain socket, or FIFO connected to the standard
input, output, and error streams. The only use for spawn discussed in this
book is for the Postfix external content filtering system in Chapter 13,

local

As the name suggests, the local daemon is responsible for local mailbox
delivery. The Postfix local daemon can write to mailboxes in the mbox
and Maildir formats. In addition, local can access data in Sendmail-style
alias databases and user .forward files.

These capabilities make local the counterpart to the Sendmail mail posting agent, and
they both maintain the same user interface.

As an alternative, local can delegate mailbox delivery to a local
delivery agent (LDA) that provides more advanced features, such as
filtering. Two very popular LDAs are procmail (http://www.procmail.org)
and maildrop (http://www.flounder.net/~mrsam/maildrop).

Postfix can run multiple instances of local.

virtual

The virtual daemon, sometimes called the virtual delivery agent, is

a stripped-down version of local that delivers exclusively to mailboxes.
It is the most secure Postfix delivery agent; it does not perform alias
and .forward file expansions.

This delivery agent can deliver mail for multiple domains, making it
especially suitable for hosting several small domains on a single machine
(a so-called POP toaster) without the need for real system or shell
accounts.

The smtp client is the Postfix client program that transports outbound
messages to remote destinations. It looks up destination mail exchang-
ers, sorts the list by preference, and tries each address until it finds a
server that responds. A busy Postfix system typically has several smtp dae-
mons running at once.

Imtp

The 1mtp client communicates with local and remote mailbox servers
with the Local Mail Delivery Protocol (LMTP) defined in RFC 2033
(ftp://ftp.rfc-editor.org/in-notes/rfc2033.txt). It is often used with the
Cyrus IMAP server (http://asg.web.cmu.edu/cyrus/imapd).

The advantages of a setup using Postfix’s Imtp client are that Postfix
handles all of the queue management and one Postfix machine can feed
multiple mailbox servers (which need to have an LMTP daemon) over
LMTP. The opposite is also true: several Postfix machines can feed one
mailbox server through 1mtp. These mailbox server(s) could, for
example, be running Cyrus IMAP.

pipe
The pipe mailer client is the outbound interface to other mail transport
mechanisms. It invokes programs with parameters and pipes the message
body into their standard input.

pickup
The pickup daemon picks up messages put into the maildrop queue by the
local sendmail user client program. After performing a few sanity checks,
pickup passes messages to the cleanup daemon.

smtpd
The smtpd daemon handles communication with networked mail clients
that deliver messages to Postfix through SMTP. smtpd performs a number
of checks that protect the rest of the Postfix system, and it can be config-
ured to implement unsolicited commercial email (UCE) controls (local
or network-based blacklists, DNS lookups, other client requests, and so on).

After accepting a message, smtpd puts it into the incoming queue,
where gmgr takes over.

cleanup
The cleanup daemon is the final processing stage for new messages. It
adds any required missing headers, arranges for address rewriting, and
(optionally) extracts recipient addresses from message headers. The
cleanup daemon inserts the result into the incoming queue and then noti-
fies the queue manager that new mail has arrived.

sendmail
sendmail is a Postfix command that replaces and emulates Eric Allman’s
MTA Sendmail. Its purpose is to provide a Sendmail-compatible inter-
face to applications that will only invoke /usr/sbin/sendmail. It interacts
with the postdrop binary to put mail into the maildrop queue for pickup.

sendmail is the slowest way to inject mail into the Posifix queue system. If you need to
send a large amount of mail at once, use SMTP instead.

qmqpd
The Posttix QMQP server implements the Quick Mail Queuing Protocol
(QMQP; see http://cx.yp.to/proto/qmgp.html) to make Postfix compatible
with qmail and the ezmlm list manager.

anvil
The Postfix anvil is a preliminary defense against SMTP clients and
denial-of-service attacks that swamp the SMTP server with too many
simultaneous or successive connection attempts. It comes with a whitelist

Anatomy of Posifix 4

42

capability for disabling restrictions for authorized clients. anvil is not
included with Postfix 2.1, but it is available in the Postfix 2.2 experimen-
tal release. anvil will stay experimental until there is enough experience
with Postfix rate limiting.

Postfix Queues

Postfix polls all queues in the directory specified by the queue_directory
parameter in your main.cf file. The queue directory is usually /var/spoocl/
postfix. Each queue has its own subdirectory with a name identifying the
queue. All messages that Postfix handles stay in these directories until Postfix
delivers them. You can determine the status of a message by its queue:
incoming, maildrop, deferred, active, hold, or corrupt.
incoming
All new messages entering the Postfix queue system get sent to the incom-
ing queue by the cleanup service. New queue files are created with the
postfix user as the owner and an access mode of 0600. As soon as a queue
file is ready for further processing, the cleanup service changes the queue
file mode to 0700 and notifies the queue manager that new mail has
arrived. The queue manager ignores incomplete queue files whose
mode is 0600.

The queue manager scans the incoming queue when moving new
messages into the active queue and makes sure that the active queue
resource limits have not been exceeded. By default, the active queue has
a maximum of 20,000 messages.

CAUTION Once theactive queue message limit is reached, the quewe manager stops scanning the

Chapter 5

incoming and deferred queues.

maildrop
Messages submitted with the sendmail command that have not been sent
to the primary Postfix queues by the pickup service await processing in
the maildrop queue. You can add messages to the maildrop queue even
when Postfix is not running; Postfix will look at them once it is started.
The single-threaded pickup service scans and drains the maildrop
queue periodically, as well as upon notification from the postdrop
program. The postdrop program is a setgid helper that allows the
unprivileged sendmail program to inject mail into the maildrop queue
and notify the pickup service of message arrival. (All messages that enter
the main Postfix queues do so via the cleanup service.)
deferred
If a message still has recipients for which delivery failed for some tran-
sient reason, and the message has been delivered to all the recipients
possible, Postfix places the message into the deferred queue.
The queue manager scans the deferred queue periodically to put
deferred messages back into the active queue. The scan interval is

specified with the queue_run_delay configuration parameter. If the deferred
and incoming queue scans happen to take place at the same time, the queue
manager alternates between the two queues on a per-message basis.

active

The active queue is somewhat analogous to an operating system'’s pro-
cess run queue. Messages in the active queue are ready to be sent, but
are not necessarily in the process of being sent.

The queue manager is a delivery agent scheduler that works to
ensure fast and fair delivery of mail to all destinations within designated
resource limits.

NOTE Although most Postfix administrators think of the active queue as a directory on disk, the
real active queue is a set of data structures in the memory of the queue manager process.

hold

The administrator can define smtpd access(5) policies and cleanup
header and body checks (see Chapter 10) that cause messages to be
automatically diverted from normal processing and placed indefinitely
in the hold queue. Messages placed in the hold queue stay there until the
administrator intervenes. No periodic delivery attempts are made for
messages in the hold queue. You can run the postsuper command to man-
ually put messages on hold or to release messages from the hold queue
into the deferred queue.

Messages can potentially stay in the hold queue for a time that
exceeds the queue file lifetime set by the maximal_queue_lifetime
parameter (after which undelivered messages are bounced to the
sender). If older messages need to be released from the hold queue, you
can use postsuper -r to move them into the maildrop queue, so that the
message gets a new timestamp and is given more than one opportunity
to be delivered.

NOTE The hold queue doesn’t play much of a role in Postfix performance; monitoring of the
hold queue is typically motivated by tracking spam and malware rather than by perfor-
mance issues.

corrupt The corrupt directory contains damaged queue files. Rather than
discarding these, Postfix stores them here so that the (human) postmas-
ter can inspect them using postcat.
Postfix logs a warning about any corrupt files upon startup.

Maps

Maps are files and databases that Postfix uses to look up information. Maps
have many different purposes, but they all have one thing in common—a
left-hand side (LHS, or key) and a right-hand side (RHS, or value).

Anatomy of Posifix 43

44

NOTE

Chapter 5

Here are a few examples of keys and values:

Key Value

postmaster: john

postmaster@example.com john

192.168.254.12 REJECT

spammer@example . com REJECT

/"Subject: your account {25}[a-z]{8}/ REJECT Mimail Virus Detected

To use a map, you specify a key and get the associated value as a result.

The keys and values here come from various files and would not make sense in one file.
The preceding list is just an illustration to show that all map entries take the same
basic form.

Map Types

Postfix can use many different kinds of maps. The formats available depend
on the way Postfix was compiled on your particular system. To find out what
formats your Postfix supports, run pestconf -m on the command line. You
should get a list of map types:

postconf -m
btree
cdb
cidr
environ
hash
ldap
mysql
nis
pcre
proxy
regexp
sdbm
static
tep
unix

Indexed Maps (hash, btree, dbm, and So On)

Indexed maps are binary databases built from regular text files with
commands such as newaliases, postalias, and postmap. The binary maps have
an indexed format so that Postfix can quickly retrieve the value associated
with a key. As a further performance improvement, the Postfix daemons
open these maps when starting up, and they do not re-read them unless they
notice a change in the map files in the filesystem. To reload a map, a
daemon exits and a new one is started by the master daemon.

NOTE

NOTE

CAUTION

If you have indexed maps that change frequently, the daemons using these maps will
restart just as often. Under a heavy load, this can lead to performance problems.

The most common indexed maps are built from the aliases, virtual,
transport, relocated, and sasl_passwd text files. You can identify a map file
because its name is the original file with a suffix that also tells you the index
format. For example, an aliases map file built with the postalias command is
named aliases.db.

When you create a file in order to build an indexed map from it you don’t have to put
keys in a specific order. The conversion tools and programs that use indexed maps do
not require a specific order for input. In fact, the process of conversion removes the
ordering.

Postfix queries entries in a predefined order specified in the access(5)
manual page. In other words, each map lookup actually consists of a series of
single queries (derived from the original query) on single keys in the
indexed map.

Linear Maps (PCRE, regexp, CIDR, and Flat Files)

Linear maps are regular text files. Postfix reads these files from top to
bottom, making them different from indexed maps. This difference is quite
important, because the first match in the file determines the action that
Postfix will take. Postfix ignores any later entries, whether they match the
query or not.

Consider the following regexp map, where a john.doe@example.com lookup
returns 0K, because the first line matches.

/john\.doe@example\.com/ OK
/example\.com/ REJECT

However, if you swap the lines in the regexp map, the other entry
matches first, so the same john.doe@example.com lookup returns REJECT:

/example\.com/ REJECT
/john\.doe@example\.com/ OK

You do not need to convert linear maps to a binary form (in fact, you
can’t do it). The Postfix daemons read them at startup and do not notice any
changes to the map until they are restarted. Typical Postfix linear maps
include header_checks, body_checks, and mime_header checks (see Chapter 9).

As your linear maps grow, it takes longer for the Postfix daemons to process them. This
is espectally true with respect to body or header checks, because the cleanup daemon
needs to check every line of the body (up to body checks_size 1limit) and headers
against every line of the map.

This can cause a significant slowdown, especially if you have extensive *_checks
parameters that use regexp) or PCRE (Perl-compaltible regular expression) type maps in

Anatomy of Posifix 45

46

Chapter 5

order to prevent spam from entering the system. When this happens, it’s usually time to
hand complex spam filtering to an external application.

To make the Postfix daemons notice changes in linear maps, run postfix
reload. If the timing is not critical, you can set the max_use parameter to define
a time-to-live for daemons. As soon as a daemon has processed the number
of tasks specified in that parameter, it quits and is restarted by master. Upon
restart, it re-reads all required maps.

Databases (MySQL, PostgreSQL, LDAP)

Postfix treats a database just like an indexed map. The result of a database
query is Match (along with the value returned by the query) or No match. The
principal difference between a database map and an indexed map is that you
do not need to restart a daemon when there is a change to the database.
Postfix does not assume that the postmaster is the only person who can alter
the database.

The drawback to this approach is that the database may not be able to
handle the number of queries gracefully, because Postfix needs to perform at
least three queries for each lookup in a map (see the “How Postfix Queries
Maps” section that follows). Under heavy load, the database backend could
stop working, and your mail service would be vulnerable to a self-induced
meltdown or a denial-of-service attack. This possibility should not prevent
you from using database backends, but you should be aware of the risk.

Database lookups can become a problem for systems with a heavy load,
but this isn’t the only issue to consider—latency can be another problem.
Database queries have a higher latency than indexed maps because Postfix
must connect to the database backend, send the query, and then wait for the
result. With an indexed map, Postfix has only to consult data that is already
loaded in memory.

If your database becomes a bottleneck, and you do not have an
excessively large map, you can insert a map between the database and
Postfix. That is, you can create an indexed map from a complete database
query, and then run Postfix with that map. You need to remember to update
the map as often as necessary, but the proxymap daemon can be used to
significantly reduce the number of concurrent connections.

Determining the Number of Simultaneous Connections to a Database

Postfix daemons (smtpd, smtp, and so on) run with a process limit (set by
default_process_limit) of 100 simultaneous processes. Running at peak load,
there would be 100 concurrent smtpd daemons, each querying the database
backend for one access(5) lookup (e.g., because we use a map for checking if
the client is in our personal blacklist and should then by denied from sending
mail to us).

Remember that one lookup results in at least three queries, so the number
of simultaneous queries to the database would be at least default_process_limit
* 3 (which, in the default configuration, would be 300 queries), while the

number of simultaneous connections is default_process_limit. This is only
the number of queries and connections for smtpd daemons; other daemons,
such as local and gmgr, may be working on other jobs, adding to the number
of open connections and simultaneous queries.

How Postfix Queries Maps

Maps can be used for various tasks. Postfix has table-driven mechanisms that
use maps (see access(5), aliases(5), canonical(5), and transport(5)). These
maps can use different lookup mechanisms (LDAP, NIS, SQL, btree, hash,
regexp, cdb, cidr, pcre, and so on).

1. <localpart@domainpart> Matches the specified mail address verbatim.

2. <domainpart> Matches domainpart as the domain part of an email
address. The pattern domainpart also matches subdomains, but
only when the string smtpd_access_maps is listed in the Postfix
parent_domain_matches_subdomains configuration setting. Otherwise,
specify .domainpart (note the initial dot) to match subdomains.

3. «<localpart@> Matches all mail addresses with the specified user part
(Iocalpart), no matter what domain they belong to.

4. Fail If the lookups don’t match, Postfix will return no match found, and
the query ends with an error.

NOTE [tisn’l possible to look up a null sender address in some lookup table types. By defaull,
Postfix uses <> as the lookup key for the null sender address. The value is specified with
the smtpd_null_access_lookup_key parameter in themain.cf file.

This order of lookups implies that Postfix performs several lookups for
each query, which isn’t really a problem unless you're using high-latency
maps like SQL or LDAP maps (and, of course, you should expect that a lot of
lookups will need multiple queries). This is just one thing to remember
before you put all your maps into LDAP and then complain on the postfix-
users mailing list that “Postfix is slow. .. .”

External Sources

Postfix supports information sources that are not built on top of Postfix and
that aren’t even under your direct control, such as blacklists (DNSBL and
RHSBL lists), DNS-based lists, and other external sources. Blacklists are
almost exclusively used in smtpd_*_restrictions parameters in order to reject
mail coming from clients or senders listed in DNSBL- or RHSBL-style lists
(see Chapter 7).

As with any external query, these lookups can fail due to connectivity
problems, denial-of-service attacks against the blacklist servers, and other
problems. In case of a timeout or other failure, Postfix may still accept mail
(bypassing a possible restriction), but it will log an appropriate warning to
the mail log.

Anatomy of Posifix 47

48

Command-Line Utilities

NOTE

Chapter 5

Postfix ships with a number of command-line utilities to assist you with
administration tasks. Although they perform different functions (such as
querying maps, examining queue files, dequeuing and requeuing messages,
and changing the configuration), they all have one thing in common—their
names start with “post.”

These commands can do much more than what is described here. We are focusing on the
options that you will experience in day-to-day operation. If you don’t find what you are
looking for here, the first place to look is the online manual.

postfix

The postfix command stops, starts, and reloads the configuration with the
stop, start, and reload options.

postalias

The postalias command creates an indexed alias map from an alias file. It
works just like the postmap command (described shortly), but it pays special
attention to the notation in an alias file (where a colon separates the key and
value). postalias must be used on alias files.

postcat

The postcat command displays the content of a message in a mail queue.

To read a message in a mail queue, you need its queue ID. Run mailq for
a list of queue IDs. For example, the queue ID of the following message is
F2B9715C0B3:

mailq
F2B9715C0B3 2464 Mon Oct 13 15:29:39 markus.herrmann@example.com
(connect to mail.example.com[217.6.113.151]: Connection timed out)
torsten.hecke@example.net
-- 2 Kbytes in 1 Requests.

After obtaining a queue ID, use it as an option to postcat to see the
contents of the queue file:

postcat -q F2B9715C0B3

postmap

The postmap command’s primary purpose is to build indexed maps from flat
files. For example, to build /etc/postfix/virtual.db from /etc/postfix/virtual,
run the following command.

NOTE

postmap hash:/etc/postfix/virtual

The postmap command can do more. Among its most useful features is
the ability to test any kind of map that your Postfix installation supports. This
is extremely helpful when debugging a configuration where lookups to the
maps appear to fail, and you are unsure whether the key and value are
actually visible to Postfix.

Debugging an Entry in a Lookup Table

To determine whether Postfix can find an entry in a map, use postmap -q. For
example, the following command returns the value assigned to the key
<sender@example.com> in the map /etc/postfix/sender_access (type hash):

postmap -q sender@example.com hash:/etc/postfix/sender_access
OK

It’s important to note that postmap does not look for the terms <sender@>,
<example.com>, and <com>, even though these terms are in the access(5) manual
page. You need to perform those lookups manually:

postmap -q sendex@ hash:/etc/postfix/sender_access
postmap -q example.com hash:/etc/postfix/sender_access
postmap -q com hash:/etc/postfix/sender_access

postdrop

The postdrop command reads mail from the standard input and drops the
result into the maildrop directory. This program works in conjunction with
the sendmail utility.

postkick

The postkick command sends a request to a Postfix daemon through a local
transport channel, making Postfix interprocess communication accessible to
shell scripts and other programs.

The postkick command sends messages to Postfix daemon processes. This requires that
Postfix is running.

Requeving a Message

The following advanced postkick example shows how to requeue a message
for immediate redelivery:

cat queueidlist | postsuper -r -
postkick public pickup W

Anatomy of Posifix 49

50

CAUTION

Chapter 5

This sequence of commands moves all selected messages listed in
queueidlist to the maildrop queue with the postsuper -r - command, where the
pickup daemon would process them like any other piece of mail. By doing this,
you reset the content filter to the setting appropriate for local submission and
add an extra Received: header.

The postkick command requests an immediate maildrop queue scan.
Otherwise, the messages would stay in the maildrop queue for a maximum of
60 seconds. The pickup daemon submits the message to the cleanup daemon,
where it gets a new queueid and is deposited into the incoming queue. The
whole point is to move the message to the active queue as quickly as possible.

postlock

The postlock command gives you exclusive access to mbox files that Postfix
writes, and then it runs a command while holding the lock. The lock you get
from postlock is compatible with the Postfix local delivery agent. Postfix does
not touch the file while your command executes. Here is an example:

postlock /var/mail/user from

Try to avoid any commands that might require a CTRL-C lo terminale. Interrupting
postlock does not guarantee that the lock will go away; you may need to remove a lock
file to deliver to the mailbox again. To see if there is a lingering lock file, run postlock
without a command. If this hangs and eventually times out, you probably have a lefi-
over lock.

postlog

The postlog command allows external programs, such as shell scripts, to write
messages to the mail log. This is a Postfix-compatible logging interface; by
default, it logs the text from the command line as a single record. Here's a
very simple example:

postlog This is a test

postlog: This is a test

grep "This is a test" /var/log/mail.log
Feb 20 11:50:16 mail postlog: This is a test

postqueve

The postqueue command is a user interface to Postfix queues, giving you
functionality that is traditionally available with the sendmail command.

¢ The -f parameter makes postqueue request the queue manager to deliver
all queued mail (flush), regardless of destination. This is equivalent to
postfix flush or sendmail -q:

postqueue -f

NOTE

The -p parameter makes postqueue print the contents of the queue. It is
equivalent to mailq:

postqueue -p

The -s domain parameter makes postqueue attempt to deliver all queued
mail bound for domain. This is equivalent to sendmail -q domain:

postqueue -s example.com

The postqueue command sends messages to Postfix daemon processes. This requires that
Postfix is running.

postsuper

The postsuper command maintains jobs inside Postfix queues. Unlike postqueue,
this command is restricted to the superuser, and it can run while Postfix is
down. Some postsuper features are needed to check the queue before daemon
processes are started. Table 5-1 shows what the postsuper command can do.

Table 5-1: Capabilities of the postsuper Command

Option Action

-d
-h
-H
-P
-r

-S

Delete a message with the named queue ID from the named mail queuel(s)
Place a message on hold so that no attempt is made to deliver it

Release mail currently on hold

Purge temporary files left over from crashes

Requeue messages with a named queue ID from a named mail queue

Check and repair the queve siructure

One of the most frequent uses of postsuper is deleting a message

from the mail queue with postsuper -d queueid. Doing this manually is
tedious, especially when deleting many files. The following Perl script
(delete_from_mailq) makes it easier:

#!/usr/bin/perl

$REGEXP = shift || die "no email-address given (regexp-style, e.g. bl.*\
@yahoo.com)!";

@data = qx</usr/sbin/postqueue -p>;

for (@data) {

if

}

(/~(Owe) (VF[ND Ns/) {
$queue_id = $1;

if($queue_id) {

if (/$REGEXP/1) {
$0{$queuve_id} = 1;

$queue_id = "";

}

Anatomy of Posifix 51

52

Chapter 5

}
}
#open(POSTSUPER," |cat") || die "couldn't open postsuper" ;
open(POSTSUPER, " |postsuper -d -") || die "couldn't open postsuper" ;
foreach (keys %0Q) {

print POSTSUPER "$_\n";
b
close(POSTSUPER);

Here’s how you'd use it:
mailq
C73A015C095 7509 Mon Oct 13 14:56:17 MAILER-DAEMON

(connect to mx5.ancientaward.com[64.156.166.211]: Connection refused)

National_Nosepicking_Month@mx5.ancientaward.com

Notice that the sender is identified as <MAILER-DAEMON> here. To remove
these bounces, run delete-from-mailq as root:

delete-from-mailq MAILER-DAEMON
postsuper: C73A015C095: removed
postsuper: Deleted: 1 message

PART I

CONTENT CONTROL

Postfix comes with three feature sets that control how
messages can enter and leave the mail system. With
these features, you can manage message flow based on
the SMTP dialog and message content, or you can
delegate the content management to external applica-
tions. These three types of features fall into three
distinct groups of configuration parameters:
restrictions, checks, and filters.
A Postmaster’s Primer to Email
Content control requires knowledge about the content. You have to
know what must, should, and may be in an email to apply restrictions,

checks, and filters effectively. Read Chapter 6 to get an insight on email
content.

How Message Transfer Restrictions Work
Restrictions control SMTP communication. Chapter 7 will explain
how restrictions work. Take your time reading it; it will make imple-
menting restrictions a lot easier.

54

Part I

Using Message Transfer Restrictions
In Chapter 8 we show you how to bring restrictions to life. All of them
can be used almost immediately.

How Built-in Content Filters Work
Checks do their work based on message content. But how do they work?
Chapter 9 introduces you to checks and tells you all about the theory of
checks.

Using Built-in Content Filters
Chapter 10 contains a bunch of assorted examples to get you going
right away.

How External Content Filters Work
External content filters delegate SMTP communication management
and content control to external applications. To understand how
Postfix processes messages that go through external content filters,
read Chapter 11.

Using External Content Filters
Need some examples of how to implement external content filters?
Read Chapter 12 to find examples you can actually get your hands on.

A POSTMASTER'’S PRIMERTO
EMAIL

The terms envelope, header, body, and
attachment all relate to some part of the
data that MTAs exchange. If you know what
they mean, you will understand the parts of
messages that the Postfix content control parameters
affect. It’s also handy that the Postfix parameter names
and syntax are derived from the RFCs.

This chapter is a primer to content control. Read it carefully, and take
some time to let the terminology and concepts sink in. After you get a grasp

of the basics, you will have no trouble attaining efficient content control.

Message Transport Basics

Message transport involves two major parts: the SMTP communication that
handles the transport and the data that is transported (which most people
refer to as the “email” or “message”). The terms used to describe message
transport weren't invented out of the blue; they were adopted from an
ancient but well-known and established system that people in earlier
centuries referred to as “mail.”

56

Chapter &6

When dealing with the regular postal system, the terms messenger,
envelope, header, body, and attachment all have well-known meanings. These
terms are technical terms when referring to email. Figure 6-1 compares a
regular letter to an email, and you can identify the following parts:

Messenger
In regular mail, the messenger is called the postman or letter carrier. In
email, the messenger is the client.

Envelope
In email, just as with regular letters, the envelope serves as a wrapper that
explains how the content is to be delivered. On the envelope, you find
the envelope sender and the envelope recipient.

Header
The header gives you metadata (information) about a message. Just as in
a real letter, the header gives you information about the sender (the
From: header), the intended recipient (To:), the originating date and
time (Date:), and the subject (Subject:). Furthermore, the Received:
headers in an email message tell you the path of a message and how long
it took to transmit.

Body
The body of an email message contains the actual content, just as in a
letter.

Attachments
If there are attachments inside an email message, this fact will be noted
in the body; just as it would in a real letter. Attachments are optional and
can be in a variety of formats.

Why Do You Need to Know This?

This may sound a bit theoretical, so far; what does all of this have to do with
running Postfix? First, there is typically more information in an email
message than in a letter. You need to know what the extra pieces are, as well
as in which part of the message these pieces appear. Also, Postfix has three
distinct parameter groups for controlling content that relate directly to
different parts of messages:

smtpd_*_restrictions
The smtpd_* restrictions parameters control the client connection and
envelope during message transport.
* checks
The *_checks parameters oversee the header, body, and attachments.
Filters

Postfix uses filters to delegate tasks to other (external) screening applica-
tions. Filters are general-purpose; they can control every part of the mes-
sage, from the envelope to attachments.

Mail Email

Postman Client
“Hi, | have a letter for you.” HELO client.example.com
Envelope Envelope

MAIL FROM:<sender@example.com>
250-0K

RCPT TO:<recipient@example.org>
- 250-0K

Recipient DATA

location 354 End data with <CR><LF>.<CR><LF>

Sender
location

Letter Email

Sender FROM: Sender <sender@example.com>
location TO: Recipient <recipient@example.org>
ini Date: Sun, 11 Apr 2004 22:36:51 +0200
f:czﬁ:nm Subject: Mail and email
Date

Dear Recipient,

Attached to this email you can find

Dear Recipient, your new certificate.

Attached fo this letter you can find
your new credit card . . .

--2055YaxWCcQjTEYO

Content-Type: application/zip

Content-Description: Attachment

Content-Disposition: attachment; filename="certificate.zip”
Content-Transfer-Encoding: base64

UESDBAoAARAAAKG 1/ S6mUZZNDAAZSY /VXEEAPOBIAFBCH
RhY2htZW5010pQSmECFwMEAAAAAACUL FOUpLGezOWAAAAF
MAAAADANAAAAAAABAAAALTEAAAAAYXROYWNODWYUACS
0eHRVVAUAA+fC] jOVeANALE sFBEAAAAABAAEASQANAE OAA

-=-2055YaxWCcQjTEY0--

Figure 6-1: Comparing a regular letter to an email

Each one of these parameters has a great number of options; if you don’t
know what part of a message triggers a particular parameter, your content
control won't work.

Controlling the SMTP Communication (Envelope)

SMTP communication involves two components: the client (the machine
that’s connecting to the server providing the SMTP service), and the
envelope that the client hands over. It’s easiest to see this by using the
telnet program on your machine to connect to your server.

A Postmaster's Primer 1o Email 57

58

NOTE

Chapter &6

Here’s a sample communication. Start by connecting to port 25 of your
mail server on the command line:

$ telnet mail.example.com 25
220 mail.example.com

The 220 code that is returned from the server confirms the hostname of
the server. Now, introduce yourself to the server like this:

HELO client.example.com
250 mail.example.com

You can perform the handshake with a HELO (for SMTP) or ELHO (for
ESMTP) command, with your client’s hostname as a parameter. If the
command is successful, you should get a 250 return code followed by the
server’s hostname.

Let’s send some mail now. The MAIL command constructs an envelope,
starting with the envelope’s sender. If the server accepts the sender, you will
get another 250 return code:

MAIL FROM:<sender@example.com»
250 Ok

The next step in building the envelope is to use the RCPT command to
specify an envelope recipient. You can enter more than one recipient:

RCPT TO:<recipient@example.com>
250 Ok

RCPT TO:<recipient_2@example.com>
250 Ok

Keep in mind that the envelope sender and envelope recipient are often different from
the sender and recipient given in the message header (which is specified as part of the
DATA command sequence that you're about o see). If you confuse the various senders
and recipients, your content control can fail.

To send the actual message (including all additional headers, such as
Subject, To, and Date), use the DATA command:

DATA
354 End data with <CR><LF>.<CR><LF>
Subject: message

This is the message

e

250 Ok: queued as 92933E1C66
QuIT

Here is a rundown of the things that you have just seen, as defined in the
electronic mail RFCs:

Client

The client is the machine sending mail; Postfix will either log hostname
and IP, or “unknown” (if the hostname cannot be determined using
DNS lookups). Postfix gets the client IP address from the kernel’s TCP/
IP stack, and gets the name from DNS or /etc/hosts before SMTP com-
munication takes place. This allows Postfix to impose restrictions if the
client’s IP address and the hostname during SMTP communication
don’t match.

Postfix always logs the client IP address and hostname (if available)
in the mail log, and it also includes this information in the final message
header.

HELO/EHLO statement

A client must introduce itself to the mail server with two pieces of infor-
mation: service type and hostname.

The first part of the introduction statement is the service type that
the client requests. HELO specifies normal service as defined by RFC 821
(ftp://ftp.rfc-editor.org/in-notes/rfc821.txt), and EHLO requests
extended service as defined in RFC 2821 (ftp://ftp.rfc-editor.org/in-
notes/rfc2821.txt).

Following the service type is the client identity. The client is
supposed to submit its fully qualified hostname.

Envelope
The envelope must contain at least two different items: exactly one enve-
lope sender and at least one envelope recipient. The client sends the
envelope by transmitting the envelope sender first and follows up with
the envelope recipients.

If there is more than one envelope recipient, the client must submit
them one after another, beginning each envelope recipient with a new
line and waiting for the server’s response after each submission.' It’s the
server’s job to permit delivery to some or all recipients.

Envelope sender
The envelope sender is the sender that Postfix replies to in the case of an
error, such as a delay or bounce notice.

Envelope recipient
The envelope recipient specifies the message’s intended recipient(s). A
single message may have multiple envelope recipients (for example, a
message to several subscribers of a mailing list).

A mail server requires at least one envelope recipient (otherwise it

has no one to deliver the message to). Therefore, a client may not use an
empty envelope recipient (<»).

'"ESMTP command pipelining is the exception to this rule.

A Postmaster's Primer 1o Email 59

60

CAUTION

NOTE

Chapter &6

Don't look at the recipient specified in the To header when you want to restrict messages
to a recipient. Messages go to the recipients defined in the envelope, not the message
header.

Nearly all of the data from the preceding list can be forged, so Postfix
offers ways to restrict forgery with the smtpd_*_restrictions parameters, which
address the following questions:

1. Where does the client come from?

2. Who does the client pretend to be?

3. Does the client have special privileges?
4. Who is the sender?

5. Who are the recipients?

Postfix also tries to get the answers to these more difficult questions:

1. Does the client provide Postfix with information in an appropriate
manner?

2. Does the client provide the information in an appropriate order?
3. Does the client provide all of the information?

4. If the client does not provide all of the appropriate information, will the
client attempt to send the message?

5. Isit possible to tell whether the information is correct?

6. Ifitis possible, is the client lying?

Postfix can get the answers to these questions by inspecting the envelope
of a message and how the SMTP dialog took place. When Postfix rejects a
message with SMTP envelope restrictions, it rejects the message before it is
received. Therefore, Postfix will not send an “undeliverable mail” notification
to the sender address. That remains the responsibility of the client.

If Postfix refuses a message based on an SMTP envelope restriction, Postfix does not
have to bounce it because Postfix preempted the client. This helps to save system
resources, keeping traffic low, and can be particularly handy if Posifix is under a heavy
spam attack that would require thousands of bounces if the messages were initially
accepled for further transport.

You can learn what restrictions Postfix has and how they work in
Chapter 7. Chapter 8 contains several examples that you can use in your
own configuration.

Controlling the Message Content

An email message consists of a header and body. The body may also contain
one or more attachments in the form of a file or another message encap-
sulated within the main message. Figure 6-2 shows a high-level view of a
simple message with an attachment.

Email content

Header

Body

Attachment header

Attachment body

Figure 6-2: An email message with an attachment

Figure 6-3 shows a message with another message as an attachment.

Email content

Header

Body

Attachment header

Attachment body

Attached RFCB822 message header

Attached RFCB822 message body

Figure 6-3: An email message with another message as an attachment

A Postmaster's Primer 1o Email 61

62

Chapter &6

You can identify these parts by looking at the message with a plaintext
viewer or editor. For example, here is a message with a file attachment:

Return-Path: <sender@example.com> ©@
X-Original-To: recipient@example.com
Delivered-To: recipient@example.com
Received: by mail.example.com (Postfix)
id 9F71443F50; Mon, 26 Apr 2004 01:32:59 +0200 (CEST)
Delivered-To: recipient@example.com
Received: by mail.example.com (Postfix, from userid 500)
id 2F23043F4F; Mon, 26 Apr 2004 01:32:59 +0200 (CEST)
Date: Mon, 26 Apr 2004 01:32:58 +0200
From: Sender <sender@example.com>
To: Recipient <recipient@example.com>
Subject: Elements of email content
Message-ID: <20040425233258.GA22383@mail.example.com>
Mime-Version: 1.0
Content-Type: multipart/mixed; boundary="/9DWx/yDrRhgMITb"
Content-Disposition: inline
User-Agent: Mutt/1.5.41

--/9DWx/yDrRhgM]Th @
Content-Type: text/plain; charset=us-ascii
Content-Disposition: inline

A blank line separates the body of a message from the headers. MIME-
encoded text and MIME-encoded attachments may appear in the body.

You may attach one or more files, including another email message.
A message within another message includes its own header and body.
Therefore, you may have nested headers.

Hope this helps,
sender

--/9DWx/yDrRhgMITb ©

Content-Type: application/x-zip-compressed
Content-Disposition: attachment; filename="attachment.zip"
Content-Transfer-Encoding: base64

UESDBAOAAAAAATILmjBOMx1uCwAAAASAAAAOAAAAYXROYWNobWVudC50eHRhdHRhY2htZW50
C1BLAQIUAAOAAAAAATILMjBOMx1uCWAAAASAAAAOAAAAAAAAAAEATAC2g0AAAABhdHRNY 2ht
ZWSOLNR4dFBLBQYAAAAAAQABADWAAAASAAAAAAA=

--/9DWx/yDXRhgMITb--

NOTE

The parts of the email are as follows:

® Email headers
@ Start of email body

© Start of attachment

Postfix can perform checks on each of these pieces (header_checks,
body_checks, mime_header_checks) separately. To check them effectively, you
need to know the required, recommended, and optional pieces that a
message may contain.,

Headers

The header carries meta-information about the message body, such as the
character encoding and transmission date. RFC 2822 (ftp://ftp.rfc-
editor.org/in-notes/rfc2822.txt) splits header elements into required and
recommended categories.

Header fields are not required to occur in any particular order. It is recommended,
though, that if they ave present, headers be sent in the order Return-Path, Received,
Date, From, Subject, Sender, To, Cc, and so on. You’ll find further information about
headers in Reading Email Headers (http://www.stopspam.org/email /headers.html).

Required Headers
There are two required header elements:

Date
The date field normally specifies the date and time that the message was
composed and sent. If the sender’s client omits this header, Postfix adds it.

From
This field contains the identity of the person(s) who sent this message.
If the sender’s client omits this header, Postfix adds it.

Recommended Headers

These are the recommended header elements:

Message-Id
This field contains a unique identifier that refers to the current version
of the current message. The client generates the message ID and guaran-
tees its uniqueness. In addition, the message ID is intended to be read by
a machine, and it may not necessarily mean anything to humans.
Because a message ID corresponds to exactly one instance of a particular
message, any subsequent revisions of the message should get new mes-
sage IDs.

If the sender’s client omits this header, Postfix adds it.

A Postmaster's Primer 1o Email 63

64

Chapter &6

To
This field contains the identity of the primary recipients of the message.
If the sender’s client omits this header, Postfix adds the value of the
undisclosed_recipients_header configuration parameter.

Subject
This field should contain a very brief description of the message.
Cc
This field contains the identity of any secondary recipients of the message.
Reply-To
This field indicates where the recipient’s client should send responses to
the message.
Content-type
This field is defined in RFC 1049 (ftp://ftp.rfc-editor.org/in-notes/
rfc1049.txt), and it indicates the structure of the message body.
MIME-Version
If this header field is present, the body of the message was (supposedly)
composed in compliance with RFC 1521 (ftp://ftp.rfc-editor.org/in-
notes/rfci521.txt).
Received
Each transport agent that encounters a message adds one of these header
lines to indicate where, when, and how the message arrived. The infor-
mation in these fields can be useful for tracing transport problems.
Return-Path
This header indicates the envelope sender and is used to identify a path
back to the originator. The mail server inserts this field upon delivery
from a local delivery agent, such as the local daemon.

Optional Headers (X-Headers)

X-headeris a generic term for an extension header field with a name that
starts with a capital X and a hyphen. X-headers are meant to be nonstandard
and to provide information only, and conversely, any nonstandard infor-
mative header should be an X-header.

Here are a few sample X-headers (there are, of course, millions more):

X-Mailer: Ximian Evolution 1.4.3

X-Priority: 3

X-Spam-Checker-Version: SpamAssassin 2.53 (1.174.2.15-2003-03-30-exp)
X-Original-To: recipient@example.com

Body

The body carries the message and must occur after the header section. The
body may be in plaintext or an encoded form. The body may also contain

attachments encoded in a form that does not get mangled when trans-
ported across the Internet (in old days, many MTAs were not eight-bit
clean; stripping off the eighth bit of a binary file corrupts it).

Attachments

Attachments are files converted into a text-only representation (printable
characters only) suitable for sending as email. There are several pieces in the
attachment puzzle, and they’re explained in the following subsections.

MIME Encodings

MIME stands for Multipurpose Internet Mail Extensions, and it is a system
for redefining the format of messages, as described in RFC 2045 (http://
www . rfc-editor.org/rfc/rfc2045.txt). Two common MIME encodings for
binary files are quoted-printable and base64:

quoted-printable
The quoted-printable encoding is intended to represent data that largely
consists of octets that correspond to printable characters in the US-
ASCII character set. It encodes the data in such a way that the resulting
octets are unlikely to be modified by mail transport.

base64
base64 is a data-encoding scheme defined in RFC 1421 (ftp://ftp.rfc-
editor.org/in-notes/rfc1421.txt) and RFC 2045 (ftp://ftp.rfc-editor.org/
in-notes/rfc2045.txt) to convert binary-encoded data to printable ASCII
characters. It is essentially a MIME-content transfer encoding for use in
Internet email that uses only alphanumeric characters (A-Z, a-z, the
numerals 0-9) and the “+” and “/” symbols, with the “=" symbol as a spe-
cial suffix code. Command-line utilities for manually encoding and
decoding base64 include mpack, munpack, and uudeview.

All halfway modern MUAs are MIME-aware, and attachments will usually
be sent base64-encoded only.

Encoding Processor
The MUA performs the task of encoding the binary attachment, and it also
automatically creates the MIME structure required to embed the mail text
and the encoded attachments in a form understood by other MIME-capable
MUAs. This form requires the following headers in the message:
MIME-Version

The presence of this header indicates that the message is MIME-

formatted. The value is normally 1.0, so the header usually looks

like this:

MIME-Version: 1.0

A Postmaster's Primer 1o Email 65

Content-type

This header indicates the type and subtype of the message content. Here
is an example:

Content-type: text/plain

The combination of type (text, in this example) and subtype (plain)
is generally called a MIME type, so the MIME type is text/plain in this
example.

A large number of file formats have registered MIME types. IANA
runs an archive listing the registered types (ftp://ftp.isi.edu/in-notes/
iana/assignments/media-types). In addition, all text types have an
additional optional charset parameter that indicates the character
encoding. A very large number of character encodings have registered
MIME charset names.

Content Types

This section lists some of the MIME types that you are likely to encounter. In
addition, the multipart-mime-message MIME type allows messages to consist
of several different pieces arranged in a treelike structure, where the leaf
nodes have a non-multipart content type and non-leaf nodes are any of a
variety of multipart types. The MIME mechanism supports the following
types (among others):

text/plain
Simple text messages use text/plain; it is the default value for the
Content-type header.
multipart/mixed
This type indicates text plus attachments (multipart/mixed with a text/
plain part and other non-text parts). A MIME message with an attached
file generally indicates the file’s original name with a Content-disposi-
tion header, so the type of file is indicated both by the MIME content
type and the (usually OS-specific) filename extension.
Viruses often send themselves as files where the Content-type and
the Content-disposition headers indicate different file types.
message/rfc822
This is a reply with the original message attached (multipart/mixed with a
text/plain part and with the original message as a message/rfc822 part).

Postfix generates bounces this way (the message/rfc822 attachment is the
original message that was bounced).

66 Chapter &6

multipart/alternative

This type indicates content with two alternative viewing methods, such as
a message sent in both plaintext and another format, such as HTML (the

same content in text/plain and text/html forms). Outlook Express uses
this content type by default, because it sends mail both as HTML and

plaintext at the same time.

Encoding Structure

A MIME multipart message contains a boundary, noted as boundary in the
mail, in the Content-type header, and this boundary should not occur in
any of the parts. Instead, it should appear between the parts, and at the
beginning and end of the body of the message. The following example

illustrates a sample multipart message:

Return-Path: <sender@example.com>
X-Original-To: recipient@example.com
Delivered-To: recipient@example.com
Received: by mail.example.com (Postfix)
id 9F71443F50; Mon, 26 Apr 2004 01:32:59 +0200 (CEST)
Delivered-To: root@example.com
Received: by mail.example.com (Postfix, from userid 500)
id 2F23043F4F; Mon, 26 Apr 2004 01:32:59 +0200 (CEST)
Date: Mon, 26 Apr 2004 01:32:58 +0200
From: Sender <sender@example.com>
To: Recipient <recipient@example.com>
Subject: Elements of email content
Message-ID: <20040425233258.GA22383@mail.example.com>
Mime-Version: 1.0 @
Content-Type: multipart/mixed; boundary="/9DWx/yDrRhgMITb" @
Content-Disposition: inline
User-Agent: Mutt/1.5.41

--/9DWx/yDrRhgM]Th ©
Content-Type: text/plain; charset=us-ascii @
Content-Disposition: inline

A blank line separates the body of a message from the headers. MIME-
encoded text and MIME-encoded attachments may appear in the body.

You may attach one or more files, including another email message.
A message within another message includes its own header and body.

Therefore, you may have nested headers.

A Postmaster's Primer 1o Email

67

68

Chapter &6

Hope this helps,
sender

--/9DWx/yDrRhgMITh ©

Content-Type: application/x-zip-compressed @
Content-Disposition: attachment; filename="attachment.zip"
Content-Transfer-Encoding: base64 @

UESDBAOAAAAAATIILmjBOMx1uCwAAAASAAAAOAAAAYXROYWNobWVudC50eHRhdHRhY2htZW50
C1BLAQIUAAOAAAAAATIL M BOMX1uCWAAAASAAAAQAAAAAAAAAAEATAC2g0AAAABhdHRhY 2ht
ZWSOLnR4dFBLBQYAAAAAAQABADWAAAA3AAAAAAA=

--/9DWx/yDrRhgMITb-- @

The parts of the message are as follows:

@ This is the MIME version header.

@® This is the header containing the content type and the boundary
string used to separate the different parts of the message.

©® The first appearance of the boundary string. A new part of the multi-
part message begins here.

O This part is plaintext.

© This is the second appearance of the boundary string, indicating that
the previous part is complete and a new part of the multipart message
begins here.

@ The new part is a Zip format file.

@ The Zip file is encoded in base64 format.

@ This is the final use of the boundary string, indicating the end of the
part and message.

HOW MESSAGE TRANSFER
RESTRICTIONS WORK

To know what can be restricted, one needs to know
what “what” is and what it should be. . . .
—Patrick, in an attempt to understand Ralf while

he explained vestrictions

This chapter explains the theory of restric-
tions. Restrictions allow your mail server to
accept or reject incoming messages by
inspecting the SMTP communication that takes
place between client and server. The information
gained from this dialog enables Postfix to impose or
lift restrictions on the client, sender, and recipient.

Although the word “restrict” usually means that you're limiting
something, the term “restriction” can also mean the exact opposite in
Postfix; you can configure restrictions to explicitly allow something.

70

Restriction Triggers

Chapter 7

Restrictions are powerful tools. To use them effectively, you need to under-
stand SMTP communication and the features that Postfix provides to analyze
this communication. You have already seen how SMTP communication takes
place in Chapter 6. We'll look at it from a different perspective here; this
time we're interested in the stages of SMTP communication as defined by
the commands given by the client. Figure 7-1 outlines these stages.

Client { $ telnet mailserver.example.com 25

220 mailserver.example.com ESMTP Postfix
HELO client.example.com
250-mailserver.example.com
MAIL FROM:<sender@example.com:
250 Ok
RCPT TO:<recipient@example.com>
250 Ok
r DATA
354 End data with <CR><LF>.<CR><LF>
From: "Sender" <sender@example.com>
To: "Recipient" <recipient@example.com>
Date: Sat, 17 May 2003 15:24:43 +0200

HELO/EHLO hostname {
Envelope sender {

Envelope recipient(s) {

DATA ¢
Here comes the mail content . . .

250 Ok: queued as OEAFFE1CES

QuIT
h 221 Bye

Figure 7-1: Stages of SMTP communication and typical client input

Each new stage in Figure 7-1 marks a moment when the Postfix smtpd
daemon learns another bit of information about the client and the message
that it wants to transmit. Postfix uses these stages to trigger restrictions, and
each stage has its own restriction parameter named after the active daemon,
the name of the stage, and purpose. That’s why restriction triggers follow this
template: smtpd stagename_restrictions.

Here is a list of all restriction triggers and their default behavior:

smtpd_client_restrictions
This trigger applies to the client’s IP address or its hostname or both. By
default, Postfix allows any client to connect.

smtpd_helo_restrictions
This trigger applies to the client’s HELO/EHLO argument and the client’s

IP address or hostname or both. The default is to allow any HELO/EHLO
arg’umem.

smtpd_sender_restrictions

This is the first trigger set that restricts parts of the envelope. Postfix
applies it to the envelope sender, the HELO/EHLO argument, and the client.
The default is to allow any envelope sender to send messages.

smtpd_recipient_restrictions
This trigger applies to the envelope recipient(s), the envelope sender,
the HELO/EHLO argument, and client IP address or hostname or both. The
default setting in Postfix is to permit any recipient for clients that belong
to the mynetworks configuration parameter, but otherwise to allow only
recipient domains in relay_domains and recipient domains in mydomains.
This protects Postfix from becoming an open relay.

smtpd_data_restrictions
This trigger detects clients that send mail content before Postfix has
replied to the DATA command. Postfix does this by tracing the DATA com-
mand when the client sends the command to the server. There is no
restriction by default.

smtpd_etrn_restrictions

This special trigger can restrict clients that may request Postfix to flush the
mail queue. The default is to allow any client to issue the ETRN command.

Each restriction trigger corresponds to a set of restrictions; you can think
of the triggers as empty boxes. To get any use out of them, you need to put
stuff (restrictions) inside.

Restriction Types

Postfix has several kinds of restrictions that can be arranged into four distinct
groups:

¢ Generic restrictions

e Switchable restrictions

¢ Customizable restrictions

¢ Additional UCE control parameters

Generic Restrictions

The first group of restrictions do not check anything in the SMTP dialog;
they simply carry out a command:

permit
Allows a request.

defer
Defers (delays) a request.

reject
Rejects a request.

warn_if reject
Assists with later restrictions; if a restriction after the warn_if reject
decides to reject a request, Postfix doesn’t actually reject the message,
but rather, prints a reject_warning message to the log.

How Message Transler Restrictions Work n

7

Chapter 7

reject_unauth_pipelining
Rejects the request when the client sends SMTP commands ahead of
time without knowing that Postfix actually supports ESMTP command
pipelining. This stops bulk mail software that improperly uses ESMTP
command pipelining from speeding up deliveries.

Switchable Restrictions

The second kind of restriction works just like switches. You turn them on or

off, and once activated, they see if a certain condition has been met. Here's

an incomplete list:

smtpd_helo_required
This restriction requires clients to send a HELO (or EHLO) command at the
beginning of an SMTP session. Both RFC 821 and RFC 2821 require the
HELO,/EHLO.

strict_rfc821_envelopes
This restriction adjusts the Postfix tolerance for errors in addresses
given in MAIL FROM or RCPT TO commands. Unfortunately, the widely
used Sendmail program permits quite a bit of nonstandard behavior,
and as a result, there is a lot of software that expects to get away with it.
Being strict here stops some unwanted mail, but it can also block legiti-
mate mail from poorly written clients.

disable_vrfy_command

The SMTP VRFY command allows clients to verify that a recipient exists.
This restriction allows you to disable the VRFY command.

allow_percent_hack
This restriction controls rewrites of the form user%domain to user@domain.
swap_bangpath

This restriction controls rewrites of the form siteluser to user@site. This
is necessary if your machine is connected to a UUCP network.

Customizable Restrictions

Customizable restrictions are maps that work like filters. In each map entry,
the key is a filter and the value is the action to take if the filter matches (refer
to the section “Generic Restrictions” for a list of valid actions). Here are a few
kinds of customizable restrictions:
HELO (EHLO) hostname restrictions
These restrictions limit the hostnames that clients may send with the HELO
or EHLO command.
Client hostname /address restrictions

These limit the clients that may establish SMTP connections to the mail
server.

Sender address restrictions
These limit the sender addresses (envelope senders) that Postfix accepts
for MAIL FROM commands.

Recipient address restrictions
These restrictions limit the recipient addresses (envelope recipients)
that Postfix accepts for RCPT T0 commands.

ETRN command restrictions
These limit the clients that may issue ETRN commands.

Header filtering
This filtering limits what is allowed in message headers. Patterns are
applied to entire logical message headers even when a logical header
spans multiple physical lines of text.

Body filtering
This filtering restricts the text that may appear in message body lines.

DNSBL-style blacklists
These blacklists restrict connections from IP addresses (clients) that
appear in DNSBL blacklists.

RHSBL-style blacklists
These blacklists disallow sender domains (as part of the envelope
sender) that appear in RHSBL blacklists.

Additional UCE Control Parameters

The set of additional UCE control parameters support other restrictions or
features that are not part of Postfix’s default functional range. Here are just a
few of the restrictions available:

default_rbl_reply

Creates a default reply template to be used when an SMTP client request
is blocked by a reject_rbl_client or reject_rhsbl_sender restriction.

permit_mx_backup_networks

Limits the use of the permit_mx_backup relay control feature to destinations
whose primary MX hosts match a list of network blocks.

rbl_reply_maps
Specifies lookup tables with DNSBL reply templates indexed by DNSBL
domain name. If no template is found, Postfix uses the default_rbl _reply
template instead.

relay_domains
Instructs Postfix to accept mail for these domains, even though this
server isn’t the final destination.

smtpd_sender_login_maps
Specifies a user that is allowed to use a specific MAIL FROM address (enve-
lope sender). To use this restriction, Postfix must know a username, so
the client must identify itself with SMTP authentication.

How Message Transler Restrictions Work 73

Application Ranges

The key to using restrictions correctly is to understand what stage of the
communication you can apply them to. Some restrictions don’t make sense
in certain stages. Table 7-1 lists restrictions by stage.

Table 7-1: Range of Application

Stage Restriction

Client (IP address and/or hostname) check_client_access
reject_rbl client
reject_rhsbl client
reject_unknown_client

HELO/EHLO hostname check_helo_access
permit_naked_ip_address
reject_invalid_hostname
reject_non_fqdn_hostname
reject_unknown_hostname

Envelope sender check_sender_access
reject_non_fqdn_sender
reject_rhsbl_sender
reject_unknown_sender_domain
reject_unverified_sender

Envelope recipient check_recipient_access
permit_auth_destination
permit_mx_backup
reject_non_fqdn_recipient
reject_unauth_destination
reject_unknown_recipient_domain
reject_unverified_recipient

DATA reject_unauth_pipelining

Building Restrictions

Restrictions can become quite complex, and you can break your mail server
in subtle (and not so subtle) ways by trying to tweak them without knowing
what you're doing. Keep the following rules in mind when building your
restrictions:

¢ Sloppy notation will render your restriction useless.

¢ The stage of evaluation makes a difference.

¢ The order of appearance within a restriction trigger is important. Pre-
ceding actions influence how further restrictions are evaluated.

Notation

As we mentioned earlier, restriction triggers are like empty boxes. However,
filling them does not mean you just throw restrictions in and you're done.

74 Chapter 7

restriction_trigger = conditional_restriction, customizable_ restriction \
maptype:/path/to/the/map, general_ restriction

Because a single restriction can easily exceed the reasonable width of a
line, you can add whitespace to the beginning of each line that continues the
preceding line so that Postfix will recognize the lines as a single parameter
setting.

Furthermore, the commas separating the preceding restrictions are
optional. Therefore, the following is equivalent to the preceding example
(and much easier to read).

restriction_trigger =
conditional_restriction
customizable_restriction maptype:/path/to/the/map
general_restriction

Moment of Evaluation

In general, Postfix does not evaluate and execute the restrictions based on a
restriction trigger immediately after the corresponding SMTP communi-
cation step takes place. Instead, Postfix waits until the client sends the first
envelope recipient. This delay exists because some mail clients keep trying
to submit their message if the server rejects a command before they have
finished sending at least one envelope recipient.

You can override this default by setting the smtpd_delay_reject parameter
to no.

However, even though it is possible to track down these clients and build
an exception list to ensure that they will not be interrupted, the best practice
is to wait until all steps have been finished and set the restrictions to take
effect after that. Not only do you reduce the complexity of your mail system,
but you also collect more data about the mail delivery attempt.

To get an idea of how smtpd_delay_reject influences the evaluation of
restrictions, have a look at Figure 7-2.

Inflvence of Actions on Restriction Evalvation

As described in the section “Customizable Restrictions,” customizable
restrictions use maps. When Postfix looks up a key in a restriction map,
Postfix executes the value that corresponds to that key. A map could look
like this:

10.0.0.1 PERMIT Private IP from VPN transfer tunnel
172.16.0 REJECT Private IP address cannot come from outside
168.100.1.3 DUNNO

192.0.34.166 0K

How Message Transfer Restrictions Work ?s

If smtpd_delay reject =no. . .

$ telnet mailserver.example.com 25 ~— smipd_client_restrictions
220 mailserver.example.com ESMTP Postfix
If smtpd_delay_reject = yes . . . HELO client.example.com t— smtpd_helo_restrictions
250-mailserver.example.com
; P MAIL FROM:<sender@example.com> ~— smtpd_sender_restrictions
smtpd_client_restrictions, 250 Ok
smtpd_helo_restrictions, RCPT TO:<recipient@example.com> — smtpd recipient_restrictions
smtpd_sender_restrictions, 250 Ok = =
smtpd_recipient restrictions DATA

76

smtpd_data_restrictions =

Chapter 7

354 End data with <CR><LF>.<CR><LF>
From: "Sender" <sender@example.com>

To: "Recipient" <recipient@example.com>
Date: Sat, 17 May 2003 15:24:43 +0200

Here comes the mail content . . .

!

. smtpd_data_restrictions
250 Ok: queued as OEAFFE1C65

QUIT
221 Bye

Figure 7-2: Influence of smtpd_delay reject on restriction evaluation

The preceding map contains four different actions for customizable
restrictions: PERMIT, REJECT, DUNNO, and OK. These values tell Postfix what to do
with a client, sender, or recipient. Although there are several actions (see the
access(5) manual page), these are the most common:

0K
There are no objections against the client and the message. Postfix stops
evaluating restrictions in the current set of restrictions and moves to the
next set.

PERMIT
Equivalent to 0K.

REJECT
Reject the message immediately, ignoring any further restrictions.
The message is ultimately rejected.

DUNNO

Stop evaluating the current restriction, but proceed to the next restric-
tion in the current set of restrictions.

The order of restrictions within a set is important, because the first
match that returns 0K or REJECT immediately halts the evaluation of
restrictions in the current set (with REJECT meaning that a client, sender,
or recipient is ultimately rejected) Postfix reads and applies restrictions
from top to bottom, or left to right if you write them in a single line. This
is why it’s easier to use the multiline notation for complicated restrictions.
Imagine trying to read this restriction if it were all on one line!

smtpd_recipient_restrictions =
check_recipient_access hash:/etc/postfix/recipients_restrictions,
permit_sasl_authenticated,
permit mynetworks,
reject_unauth_destination,
reject_unauth_pipelining,
reject_rbl _client relays.ordb.org
permit

Figure 7-3 illustrates the restriction evaluation process and shows the
action for each of the four values.

Slowing Down Bad Clients

Any client that causes a number of errors when talking to smtpd (for example,
by triggering a REJECT in a restriction or causing a syntax error in arguments)
causes smtpd to make a short pause before accepting further commands in
that session. This serves as a defense against runaway client software.

You can tune this with several parameters. The smtpd_error_sleep_time
parameter specifies the number of seconds to pause after each mistake (the
default is one second). The smtpd_soft_error_limit parameter serves as a kind
of tarpitting mechanism; when a remote SMTP client makes several mistakes,
the Postfix SMTP server can insert additional delays before responding.
Finally, you can abort the session based on the smtpd_hard_error_limit
parameter.

These three parameters work together as follows:

e Ifaclient causes errors and the total number of errors in the current
SMTP session is below the value of smtpd_soft_error_limit, each error
causes a delay of smtpd_error_sleep_time.

e Ifa client causes errors and the total number of errors in the SMTP ses-
sion exceeds smtpd_soft_error_limit, each error causes a delay of the
number of errors above the smtpd_soft_error_limit in seconds.

e Ifaclient’s number of errors exceeds smtpd_hard error limit, Postfix ter-
minates the session.

For example, let’s say that you configure the parameters as follows:

smtpd_soft_error limit = 5
smtpd_hard_error_limit = 10
smtpd_error_sleep_time = 1s

If a client causes 11 errors in a single session, Postfix pauses for 1, 1,

1,1, 1, 2, 3, 4, 5, and 6 seconds, respectively, and upon the 11th error, it
disconnects.

How Message Transler Restrictions Work ??

Mail client

SMTP

smtpd_client_restrictions

-— REJECT restriction a2 DUNNO
~-a— REJECT restriction b DUNNO
0K, PERMIT
~-— REJECT 7 default restriction
OK, PERMIT
/ 0K, PERMIT

smtpd_sender_restrictions
~— REJECT — restriction ¢ DUNNO
~a— REJECT restriction d DUNNO
0K, PERMIT
~a— REJECT d

~ lefault resiriction
0K, PERMIT

/ 0K, PERMIT
—

/

\

smtpd_..._restrictions
~#— REJECT — resfriction e DUNNO

--— REJECT restriction f DUNNO

0K, PERMIT

~&— REJECT 7

default restriction
OK, PERMIT

/ 0K, PERMIT
f

W—

Figure 7-3: The restriction evaluation process

78 Chapter 7

Restriction Classes

A restriction class is a special form of restriction trigger that is not predefined
or bound to any particular stage of SMTP communication. You define them
as you need them, and you trigger them by referring to them in maps of
customizable restrictions.

For example, let’s say that you have a customizable restriction map
for checking envelope sender addresses, and you want to trigger another
set of restrictions if the envelope sender matches example.com. In this
case, you want to put this new set of restrictions in a new class named
check_if_example.com_sender. First, declare the new class in your main.cf file.

smtpd_restriction_classes =
check_if_example.com_sender

Now, also in main.cf, add some restrictions to your new class:

check_if_example.com_sender =
check_sender_access hash:/etc/postfix/bounces
check _sender access hash:/etc/postfix/valid example.com senders
check_sender_access regexp:/etc/postfix/nice_reject.regexp

As you can see, these new restrictions examine the envelope sender
(although they could be anything appropriate for the current stage of the
SMTP dialog).

Don’t worry about the maps in these restrictions; you'll see how to define
them later. We’'re still missing an important part, though. How do you
activate check_if_example.com_sender?

To do this, you need a check_sender_access restriction in your
smtpd_*_restrictions set. Let’s say that you already have this set to the
following map that accepts senders from foo.com and rejects those from
bar.org (see the section “Influence of Actions on Restriction Evaluation”
earlier in this chapter for valid actions):

foo.com 0K
bar.org REJECT

To add the new restriction class, augment the map as follows:

foo.com 0K
bar.org REJECT
example.com check_if_example.com_sender

As you can see, the key to using restriction classes is finding the correct
place to insert them in a customizable restriction’s map.

How Message Transfer Restrictions Work ?9

USING MESSAGE TRANSFER
RESTRICTIONS

Junk mail is war. RFCs do not apply.
—Wietse Venema

Restrictions control the message flow,
making decisions based on what the client
transmits during the SMTP dialog. The
number of situations in which restrictions can
be used is seemingly immeasurable, so instead of

listing all restrictions and all possible options available
for those restrictions, this chapter describes the scenarios that frequently
come up on the Postfix mailing list and in everyday use. For each scenario,
we’ll discuss the restrictions and options in depth to show you how to imple-
ment them and help you understand why they are implemented as they are.

How to Build and Test Restrictions

Before you start modifying the default restrictions, you should know exactly
what you are trying to restrict. This isn’t very difficult when you only toggle
Boolean restrictions on or off, but it can get trickier if you want to restrict
email from hosts that try to disguise their origin.

82

Chapter 8

A common adage on the Postfix mailing list is “The log is your friend.” It
might seem difficult to imagine a mail log as a friend, but the log really
comes in handy when gathering information for restricting email flow.
Simply put, the mail log holds most of the information needed to build
effective restrictions. Take a look at this series of log entries for an incoming
message:

Apr 14 21:14:48 mail postfix/smtpd[31840]: 4F2A643F30:
client=unknown[172.16.0.1] @

Apr 14 21:14:48 mail postfix/cleanup[31842]: 4F2A643F30:
message-1id=<002101c42254$792¢2530$010010ac@stateofmind.de> @

Apr 14 21:14:48 mail postfix/nqmgr[31836]: 4F2A643F30:
from=<test@example.com>, ©
size=666, nrcpt=1 ©® (queue active)

Apr 14 21:14:48 mail postfix/smtpd[31840]: disconnect from unknown[172.16.0.1]

Apr 14 21:14:48 mail postfix/smtp[31844]: 4F2A643F30: to=<p@state-of-mind.de>, ©
relay=mail.state-of-mind.de[212.14.92.89], @
delay=0, status=sent (250 Ok: queued as 97E70E1(65) @

The parts of the message are as follows:

® The client (IP and hostname) that delivered the message

® The Message-Id header

® The envelope sender (MAIL FROM command in SMTP dialog)

O The number of recipients

© The envelope recipient(s) (RCPT T0 command in SMTP dialog)

® Where the message went

@ The queue ID that the remote Postfix server assigned to the message

If your job is to restrict the transport of a message, and you need some
more information to figure out what you’'re dealing with, the log is the place
to get to know your “opponent.”

Simulating the Impact of Restrictions

A good set of restrictions is rarely achieved on the first try. To get what you
need, you typically have to go through several iterations of trial and error. To
test your restrictions, you will need messages to run your restrictions against,
and chances are that you do not have a test machine at your service and must
develop your restrictions on the production server. Unfortunately, this
presents the risk of having false positives and losing important email.

To solve this problem, Postfix has a warn_if_reject parameter for testing
restrictions, which is similar to the WARN action in checks. By prepending this
parameter to a restriction that you want to test, Postfix just logs the effect of
the restriction, but does not reject the mail. Here’s how you might use it to
test reject_unknown_sender_domain.

NOTE

smtpd_recipient_restrictions =
permit_mynetworks
reject_unauth_destination
warn_if reject reject_unknown_sender_domain
permit

As soon as you set this parameter up, the mail log reports the “simulated”
rejection like this:

Jun 25 16:10:52 mail postfix/smtpd[32511]: 8075015C02F: reject warning: RCPT
from sccrmhcil.comcast.net[204.127.202.55]: 550 <DickinsL@newfaces.gr>:
Sender address rejected: Domain not found; from=<DickinsL@newfaces.gr>
to=<example@charite.de> proto=ESMTP helo=<sccrmhcii.attbi.com>

After you're sure that the restriction works, you can remove the
warn_if_reject parameter from your restriction. Further log entries will
inform you that the restriction was successful by logging rejected messages:

Jun 25 16:11:23 mail postfix/smtpd[32511]: 8075015C02F: reject: RCPT from
sccrmhcii.comcast.net[204.127.202.55]: 550 <DickinsL@newfaces.gr>: Sender
address rejected: Domain not found; from=<DickinsL@newfaces.gr>
to=<recipient@example.com> proto=ESMTP helo=<sccrmhcii.attbi.com>

Making Restrictions Effective Immediately

Postfix consists of several different daemons that load their configuration
data upon startup. Some of the daemons run only for a short time and
terminate in order to avoid excess resource utilization. However, other
daemons do nof restart unless you tell Postfix to do so.

These long-running daemons, gqmgr and ngmgr (it’s called ngmgr in older
versions only, the new versions of Postfix use the new queuemanger by
default, but in that case it’s named gmgr—with the old queuemanager being
ogmgr), play an important role in restricting email flow and will not notice
configuration changes until the whole system restarts or you intervene
manually. Therefore, you need to remember that whenever you change
main.cf or master.cf, you must issue a postfix reload command to make the
queue manager reload the configuration.

Theoretically, the changes will be picked wp over time, because daemons will die and be
reborn after max_use uses. Except, of course, in the case of qmgr, which never dies.
Changes in options for qngr always require a postfix reload. Allowing the changes to
be adopted over time, however, can lead to some daemons using the old configuration
while the others use the new configuration, which may not be ideal.

Using Message Transter Resirictions 83

84

Restriction Defaults

Postfix comes with a safe set of default restrictions that prevent your machine
from becoming an open relay (or third-party mail relay). You can find out
what the default restrictions are by telling postconf to print out the default
settings for smtpd_recipient_restrictions like this:

postconf -d smtpd_recipient_restrictions
smtpd_recipient restrictions = permit_mynetworks, reject unauth_destination

Postfix evaluates restrictions in the order that they're listed. In this case,
if a client wants to relay a message, Postfix checks whether the connection
came from a host within mynetworks. If that’s the case (if the evaluation of
permit_mynetworks returns 0K), Postfix accepts the message for delivery.

If the client does not come from mynetworks, Postfix evaluates
reject_unauth_destination. This restriction defeats relaying attempts by
checking whether the message recipient is inside the final destination and
relay domains that you configured for Postfix. If the recipient is not within
those domains, reject_unauth_destination returns REJECT, and Postfix tells the
client that it may not relay.

If Postfix feels responsible for the message destination, reject_unauth_
destination returns 0K, and Postfix evaluates the next restriction. However,
there are no more restrictions in the list, so Postfix assumes an implied
default of permit and accepts the message.

These two restrictions are the basics that protect your server from being
an open relay, but they do not protect your users from spam, nor do they tell
clients connecting to your server to behave properly. The rest of this chapter
shows you how to make restrictions tougher.

Requiring RFC Conformance

NOTE

Chapter 8

Requiring proper behavior (conformance to the RFCs) from local and
remote clients is the first step in running a tight ship. Not only does this
ensure that your mail server circulates valid messages to other mail servers,
but it also requires remote clients to behave properly. This can be useful in
defending against spammers, who are always in a hurry, skirt the rules, and
disguise identifying information.

This section shows you how to impose restrictions on the hostname,
envelope sender, and envelope recipient to achieve RFC conformance.

The restrictions you see in here will not be used in main.cf in the order they are
explained. This is intentional, and you'll see why in the section “Processing Order for
RFC Restrictions” later in this chapter. For the moment, just add the restrictions as they
appear in the example listings.

NOTE

CAUTION

Restricting the Hostname in HELO/EHLO

A good place to start is to have Postfix insist that clients introduce themselves
properly when they want to send messages to or through your server. There
are a number of restrictions that you can impose on the HELO/ELHO part of
the SMTP dialog, from simply requiring that clients send a hostname to
requiring that they send a valid hostname.

Requiring a Hostname

The Postfix smtpd_helo_required parameter requires all clients to issue either a
HELO or an EHLO statement when starting SMTP communication. Both RFC 821
(ftp://ftp.rfc-editor.org/in-notes/rfc821.txt) and RFC 2821 (ftp://ftp.rfc-
editor.org/in-notes/rfc2821.txt) mandate this handshake, but Postfix sets the
parameter to no by default. Enable it by adding the following line to your
main.cf file:

smtpd_helo required = yes

After a configuration reload, Postfix will refuse messages from any client
that does not introduce itself properly. You can test this by connecting to
your server and trying to initiate a message transmission without the HELO
statement. Here’s how Postfix should interact when requiring a hostname:

$ telnet mail.example.com 25

220 mail.example.com ESMTP Postfix
MAIL FROM: <sender@example.com>
503 Error: send HELO/EHLO first
QuIT

221 Bye

Requiring an FQDN
The HELO/EHLO statement is nice, but clients are also required to submit
their full hostname along with the handshake (for example, HELO

client.example.com). Furthermore, the RFCs mandate that the hostname
be a fully qualified domain name (FQDN).

An FQDN does not necessarily exist in domain name service (DNS) records.

Postfix will refuse messages from any client that does not submit an
FQDN hostname if you set the reject_non_fqdn_hostname option inside
smtpd_recipient_restrictions.

Be careful with this restriction. Some mail clients, such as Microsoft Outlook, use only
the localpart of the name (e.g., client) by defaull, unless you configure the operating
system to provide an FODN hostname for its applications.

Using Message Transfer Resirictions 85

When you add reject_non_fqdn_hostname to your list of smtpd_recipient_
restrictions, it should look something like this in your main.cf file:

smtpd_recipient_restrictions =
permit_mynetworks
reject_unauth_destination
reject_non_fqdn_hostname
permit

Test the restriction by connecting to your mail server and issuing a
simple hostname, as in this example:

$ telnet mail.example.com 25

220 mail.example.com ESMTP Postfix

HELO client

250 mail.example.com

MAIL FROM: <sender@example.com>

250 Ok

RCPT TO: <recipient@example.com>

504 <client>: Helo command rejected: need fully-qualified hostname
QuIT

221 Bye

Rejecting Invalid Characters in the Hostname

The RFCs say that hostnames sent with the HELO/EHLO statement should not
only be FQDNSs, but the characters used to build the hostnames must also

obey the requirements of the domain name system. A valid domain name

must contain at least the following elements:

e Atop level domain (TLD), such as “com”
¢ A domain name, such as “example”
¢ Adot (.) separating the TLD and domain name

Any other hostname is not likely to resolve properly, making interaction
between the client and the server difficult, if not impossible. You can tell
Postfix not to speak with such clients by using the reject_invalid_hostname
option in smtpd_recipient_restrictions. Here’s an example of where you
might put it:

smtpd_recipient_restrictions =
permit_mynetworks
reject unauth_destination
reject_non_fqdn_hostname
reject_invalid hostname
permit

As before, test this by connecting from a remote host to your mail server
“won

and issuing an invalid hostname. The client introduces itself as “.” in the
following sample session.

86 Chapter 8

$ telnet mail.example.com 25

220 mail.example.com ESMTP Postfix

HELO .

250-mail.example.com

MAIL FROM:<sender@example.com>

250 Ok

RCPT TO:<recipient@example.com>

501 <.>: Helo command rejected: Invalid name
QuIT

221 Bye

Restricting the Envelope Sender

The envelope sender must also contain an FQDN in the domain part, and
the envelope must belong to an existing domain. Envelope senders such as
sender and sender@example do not include the FQDN domain part. An example
of a complete envelope server is sender@example.com. Invalid addresses can
cause great confusion because the sender address of the message looks as if it
originated from the server. There are two things that can go wrong:

¢ An MTA that needs to bounce a message with an incomplete envelope
sender would bounce to local users. The bounce wouldn’t make it to the
original sender.

¢ Postfix could try to “fix” the invalid address, creating an even worse situa-
tion. Because Postfix knows that the envelope sender must be an FQDN,
it would run the trivial-rewrite daemon to canonicalize these email
addresses by adding $myorigin to sender (resulting in sender@$myorigin)
and $mydomain to sender@example (resulting in sender@example.$mydomain).
Therefore, the envelope sender for messages coming from a remote
server would be completely incorrect.

To prevent this, add the reject_non_fqdn_sender option to smtpd_recipient_
restrictions, as in this example:

smtpd recipient restrictions =
reject_non_fqdn_sender
permit_mynetworks
reject_unauth_destination
reject_non_fqdn_hostname
reject_invalid_hostname
permit

Test this by connecting from a remote machine to your mail server and
issuing an incorrect envelope sender. This example shows how the restric-
tion will make Postfix reject messages from such a sender:

$ telnet mail.example.com 25
220 mail.example.com ESMTP Postfix
HELO client.example.com

Using Message Transter Resirictions 87

88

NOTE

Chapter 8

250 mail.example.com

MAIL FROM: <sender>

250 Ok

RCPT TO: <recipient@example.com>

504 <sender>: Sender address rejected: need fully-qualified address

Mail from Nonexistent Domuains

A responsible mail server does not accept messages from sender domains
that do not exist, because it cannot contact the sender in the nonexistent
domain if there is a delivery failure. Other configurations would cause a
double bounce as soon as the MTA tried to notify the sender, and a message
with a nonexistent sender domain would end up in the postmaster’s
mailbox.

Mail servers have to deal with nonexistent domains because users sometimes mistype
their mail addresses when configuring mail clients; spammers also use nonexistent
domains to hide their origin.

To protect recipients and postmasters from double bounces and ill-
formed messages, add the reject_unknown_sender_domain option to your smtpd_
recipient_restrictions configuration. For example, you can place it as follows:

smtpd_recipient_restrictions =
reject_unknown_sendexr_domain
permit_mynetworks
reject_unauth_destination
reject_non_fqdn_hostname
reject_invalid_hostname
permit

The following example shows how you might test the restriction (you're
looking for the 450 error code that Postfix sends as a response to the MAIL
FROM command):

$ telnet mail.example.com 25

220 mail.example.com ESMTP Postfix

HELO client.example.com

250 mail.example.com

MAIL FROM: <sender@domain.invalid>

250 Ok

RCPT TO: <recipient@example.com>

450 <sender@domain.invalid>: Sender address rejected: Domain not found

Restricting the Envelope Recipient

As a final step in forcing incoming connections to adhere to the RFCs, you
can reject any message that has a nonexistent domain or user in the envelope
recipient.

A mail server shouldn’t accept any message for a domain that does not
exist, because there is no way to deliver such a message. If the mail server
accepts a message and bounces it back later, the user might think something
is wrong with the mail server because it initially accepted the message.

Configuring your mailer to reject messages to nonexistent domains
passes the problem back to the client or the user, where it originated. To set
this up in Postfix, use the reject_unknown_recipient_domain option inside your
smtpd_recipient restrictions set, like this:

smtpd_recipient_restrictions =
reject_unknown_recipient_domain
permit_mynetworks
reject_unauth_destination
reject_non_fqdn_hostname
reject_invalid hostname
permit

As usual, you can test it by sending a nonexistent recipient domain in a
manual connection to the server. Here’s an example where Postfix rejects a
message because invalid.domain is not a valid domain:

$ telnet mail.example.com 25

220 mail.example.com ESMTP Postfix

HELO client.example.com

250 mail.example.com

MAIL FROM: <sender@example.com>

250 Ok

RCPT TO: <recipient@domain.invalid>

450 <recipient@domain.invalid>: Recipient address rejected: Domain not found

Mail to Unknown Recipients

You can configure Postfix to deliver messages for an unknown user in your
domain to the postmaster. At first glance, this might seem like a good idea
because the postmaster can examine and manually deliver these messages
whenever possible.

Although this would theoretically constitute excellent customer service,
setting up a default delivery target would probably result in a denial-of-
service (DoS) attack on your mail server as soon as it became the target of a
spammer’s or worm’s dictionary attack. In such an attack, the attacker
attempts to deliver a message to existing recipients by sending messages to
addresses using all possible combinations of letters. For example, the
attacker could start with aa@yourdomain.com, then try ab@yourdomain.com, and go
on through all two-letter combinations until reaching zz@yourdomain.com.

Not only is it difficult to winnow out the valid messages from the mess
created by this kind of attack, but the server is also exposed to the risk of
consuming too much bandwidth, CPU time, memory, and disk space, until
your server finally caves in and stops servicing message transmission requests.
For example, the Sobig.F virus overloaded many mail servers in August 2003.

Using Message Transter Resirictions 89

90

CAUTION

Chapter 8

Keep in mind that Postfix tries to provide the most reliable service pos-
sible. Reliability implies consistency, and that’s why it rejects mail addressed
to unknown users by default, without any manual intervention. This is great
for a stand-alone Postfix installation, but it’s also useful for a Postfix server
running on a smart host that protects other mail servers.

Postfix determines the validity of recipients by consulting maps. There
are two configuration parameters that tell Postfix where to find this infor-
mation: local_recipient_maps and relay recipient_maps. Both parameters
expect one or more maps that contain valid recipients. The local_recipient_
maps parameter defines valid local recipients, as shown in this example, which
defines recipients in the Unix password file and alias maps:

postconf -d local_recipient_maps
local_recipient_maps = proxy:unix:passwd.byname $alias_maps

On the other hand, relay_recipient_maps defines recipients for when
Postfix is relaying messages to a final destination (such as a mailbox server):

postconf -d relay recipient_maps
relay recipient maps = hash:/etc/postfix/relay recipients

When using relay_recipient_maps, take special care that Postfix knows
all valid recipients for its relay target(s). If the destination happens to be
a Microsoft Exchange server, consult Chapter 13 on how to extract the
user map.

The use of luser_relay disables the local_recipient_maps parameter because it makes
all local recipients valid. Likewise, a catchall wildcard entry in your virtual_alias_
maps entries disables rejection of mail to nonexistent recipients because the wildcard
renders all recipients valid. For example, the following map entry makes all recipients
in example.com valid:

@example.com catchall@localhost

Mail to Unqualified Recipient Names

An address that is not fully qualified, such as recipient, contains the localpart
of the email address. It’s okay to accept these addresses for local recipients
on a machine that receives mail for a single domain, butit is a big problem as
soon as your mail server receives messages for another domain.

This is because the localpart leaves too much room for interpretation
when standing on its own.

Let’s say that you're an ISP for both example.com and example.net, two
competing businesses. If you get a message for sales, where does that go to?
Should it go to sales@example.com or to sales@example.net if email services for
both are hosted on the same machine?

NOTE

This is why you should reject addresses that aren’t fully qualified. Don’t
assume responsibility for something you shouldn’t have anything to do with.
It’s the sender’s job to prepare the message for proper transmission, and this
means specifying a unique recipient.

There’s just one exception: You must accept mail for postmaster in non-FQDN form.

Postfix rejects messages to non-FQDN recipients as soon as you add the
reject_non_fqdn_recipient option to the smtpd_recipients_restrictions
parameter, as in this example:

smtpd_recipient_restrictions =
reject_non_fqdn_recipient
reject unknown recipient domain
permit_mynetworks
reject_unauth_destination
reject_non_fqdn_hostname
reject_invalid_hostname
permit

Test it by connecting to your mail server from a remote host and
providing an incomplete envelope recipient. A session such as the following
should be sufficient to verify that the restriction works:

$ telnet mail.example.com 25

220 mail.example.com ESMTP Postfix

HELO client.example.com

250 mail.example.com

MAIL FROM: <sender@example.com>

250 Ok

RCPT To: <recipient>

504 <recipient>: Recipient address rejected: need fully-qualified address

Maintaining RFC Conformance

You have probably noticed in this chapter that restrictions can become
fairly complex. The dark side of restrictions is that the more complex
they become, the higher the chance that you will specify one that makes
your mail system malfunction (if not rendering it completely useless)

by rejecting content that you must accept under all circumstances. The
following sections show you how to avoid inadvertently locking some or
all senders out. This is important, because you can accidentally exclude
the senders that might be able to tell you that something is wrong with
your configuration.

Using Message Transfer Resirictions 91

92

CAUTION

Chapter 8

Empty Envelope Sender

First, never block the empty envelope sender (<>). This address belongs to
MAILER-DAEMON, and the mail server uses it when sending bounces and
status notifications. If you block it, remote servers can’t tell your users if
something goes wrong with messages they send.

Blacklists, such as dsn.rfc-ignorant.org, list mail servers that categorically block empty
envelope senders, so mail servers that use these blacklists won’t accept mail from such
servers. (This is discussed later in the “Rejecting Blacklisted Sender Domains” section).

All you need to do is treat the empty envelope sender as any other valid
recipient and build good (antispam) restrictions to protect your recipients.
Let the restrictions do the work, and if a message with an empty envelope
sender comes in, accept it. After all, any sender address could be fake. . . .

Special Role Accounts

There are two addresses for which you must always accept messages on a mail
server; they are required to run an RFC-compliant mail server:

postmaster
Always accept mail for postmaster; it’s the clearinghouse for mail-related
problems. Users must be able to contact the postmaster if they need help
with mail (see RFC 2821 at http://www.rfc-editor.org/rfc/rfc2821.txt).
abuse
Accepting mail for abuse ensures that users can tell you of potential mail
abuse originating from your mail server (see RFC 2142 at http://www.rfc-
editor.org/rfc/rfc2142.txt).

Optionally, you should accept messages for the following addresses if you
run certain servers (see RFC 2142; http://www.rfc-editor.org/rfc/rfc2142.txt):

webmaster

Accept mail for webmaster if you run a web server.
hostmaster

Accept mail for hostmaster if you run a nameserver.

You can accept messages for these recipients by using the check_
recipient_access parameter in combination with a map, such as /etc/postfix/
roleaccount_exceptions, that lists the recipients that are to accept messages.
The map might look like this (the 0K value for each map key tells Postfix that
it’s fine to accept messages for this recipient regardless of recipient
restrictions):

addresses that you must always accept
postmaster@ 0K
abuse@ OK

addresses that you should accept if you run DNS and WWW servers
hostmaster@ OK
webmaster@ OK

After setting up this file, convert it to a map with the postmap hash:/etc/
postfix/roleaccount_exceptions command. Then, specify the map as a
parameter to the check_recipient_access setting in your list of restrictions in
main.cf. Here’s an example setting:

smtpd_recipient_restrictions =
reject_non_fqdn_recipient
reject_non_fqdn_sender
reject_unknown_sender_domain
reject_unknown_recipient_domain
check_recipient_access hash:/etc/postfix/roleaccount_exceptions
permit_mynetworks
reject_unauth_destination
permit

After reloading Postfix, you're safe to proceed building more complex
rules. The map with the exceptions is being queried after Postfix has
checked for unauthorized relaying; thus it’s safe to specify postmaster@.

Processing Order for RFC Restrictions

You might have noticed by now that the options added to smtpd_recipient_
restrictions in the preceding sections weren’t specified in the same order as
the sections themselves. This is because the restriction options can interfere
with each other if they aren’t in the proper order. Have a look at the
following listing:

smtpd recipient restrictions =
reject _non_fqdn_recipient
reject_non_fqdn_sender
reject_unknown_sender_domain
reject_unknown recipient domain
permit_mynetworks
reject_unauth_destination
check_recipient_access hash:/etc/postfix/roleaccount_exceptions
reject_multi_recipient_bounce
reject_non_fqdn_hostname
reject invalid hostname
permit

The permit_mynetworks option denotes an important boundary between
clients on your internal network and clients outside. Options that appear up
to and including this point apply to both internal and external clients, but
those below permit_mynetworks apply to external clients only.

Using Message Transter Resirictions 93

%

The options that precede permit_mynetworks require basic RFC confor-
mance from all clients, whether they are inside or outside your network.

The reject_unauth_destination option prevents your server from becoming
an open relay. It's best not to specify any options that will allow messages to go
through before you specify permit_mynetworks. After that it is good to follow up
with reject_unauth_destination as soon as possible to make sure that there is no
way an unauthorized host can use your server as an open relay.

Checks for SMTP AUTH should go between reject_unauth_destination
and permit_mynetworks. Then, before specifying any more rejection options,
use check_recipient_access to enable unconditional delivery to the special role
mailboxes on your system.

Finally, after rejecting possible multiple-recipient spam bounce attempts
and bogus envelope-recipient hostnames, you can accept messages with the
permit option.

Antispam Measures

Chapter 8

Spammers need to disguise their messages’ origin unless they want to be
taken to court. Usually they will fake the envelope sender or try to lull the
receiving server to sleep by telling it their client is to be trusted—that it
belongs to the local network. Restrictions can check and reject such
messages. Furthermore, they can query blacklists, where spammers and
other parties you don’t want to receive messages from are listed. The
following section shows you how to put such restrictions into effect.

Preventing Obvious Forgeries

Some spam software tries to disguise message origin by using your mail server’s
hostname as its own in the HELO/EHLO greeting. To Postfix, this seems like a
paradox, because the only host that is allowed to use the server hostname is the
host itself. However, Postfix would never connect to its smtpd daemon to send
mail to itself unless it were configured incorrectly and a mail loop was created.

Adding these restrictions behind permit_mynetworks will make them apply
only to external clients and not to proxy filters or local clients with incom-
plete SMTP implementations.

Therefore, you can safely decline SMTP communication with any client
that greets your mail server with the mail server’s hostname. To do this, first
create a map file called /etc/postfix/helo_checks that contains variations on
your hostname. Here are some examples that cover the hostname, the host’s
IP address, and the bracketed IP address that clients outside of the mail
server should not use:

/"*mail\.example\.com$/ 550 Don't use my hostname
/7192\.0\.34\.166%/ 550 Don't use my IP address
/™\[192\.0\.34\.166\]%/ 550 Don't use my IP address

According to RFC 2821, an IP address all by itself is not a valid argument
to the HELO handshake request. An IP address is allowed, as long as it is

specified as [ipv4address] (enclosed in angular brackets) or as an IPv6 address,
[ipv6:ipv6address], also enclosed in angular brackets. To be strict and refuse
service to any client that sends an unbracketed IP address, add this line:

/*[0-9.]+%/ 550 Your client is not RFC 2821 compliant

To put the map in action, specify it (and its type) as an argument to the
check_helo_access option in your smtpd_recipient_restrictions parameter.
Here’s how it might look:

smtpd recipient restrictions =
reject _non_fqdn_recipient
reject_non_fqdn_sender
reject_unknown_sender_domain
reject_unknown_recipient_domain
permit_mynetworks
reject_unauth_destination
check _recipient_access hash:/etc/postfix/roleaccount_exceptions
reject_non_fqdn_hostname
reject_invalid_hostname
check_helo_access pcre:/etc/postfix/helo_checks
permit

To test this, connect to your mail server and issue your own name in the
HELO greeting. You should get a rejection, as shown in this example session:

$ telnet mail.example.com 25

220 mail.example.com ESMTP Postfix

HELO mail.example.com

250 mail.example.com

MAIL FROM: <sender@example.com>

250 Ok

RCPT TO: <recipient@example.com>

550 <mail.example.com>: Helo command rejected: Don't use my hostname
QUIT

221 Bye

Bogus Nameserver Records

Postfix can reject messages if there is evidence that the nameserver records
for the HELO domain, sender domain and recipient domain are forged or
do not allow correct message transport. Here are some questionable things
you might see in DNS records:

Bogus networks
Some mail servers claim to be from networks that Postfix cannot reach,
including those of private IP networks that you're not using (see RFC
1918, ftp://ftp.rfc-editor.org/in-notes/rfc1918.txt), the loopback
network, broadcast addresses, and multicast networks.

Using Message Transter Resirictions 95

Spam havens
Spam havens are networks known to be owned by spammers or those
that provide services to spammers. It’s possible to reject all messages
from such domains. You can look up spam havens or spam operations
on ROKSO (the Register of Known Spam Operations, http://www.spam-
haus.org/rokso/index.lasso).

Wildcard MTAs
Wildcard MTAs claim to be responsible for any domain, even for those
that do not exist. Normally, this wouldn’t be a problem, because you
can refuse access involving unknown sender and recipient domains.
Unfortunately, some domain registries got the bright idea that they
could redirect unknown domain names to their own domain. This pro-
vides a valid A record to unknown domains, and therefore renders the
restriction options reject_unknown_sender_domain and reject_unknown_
recipient_domain useless.
NOTE The first domain registry to redivect unknown domains was VeriSign (http://
www. verisign.com) in 2003. VeriSign abused its power over the .net and .com
namespaces and redirected all nonexistent .com and .net domains to its own site
(sitefinder.verisign.com). In addition, VeriSign set up its own mail service for
unknown domains, which made it impossible to reject messages from unknown
domains. This is an open invitation to spammers, and you can reject messages from
wildcard MTAs blocking the MX host in wildcard domains.

All of the preceding setups either provide bogus nameserver records
or support spammers. To reject mail from such domains and networks,
you can create a map file called /etc/postfix/bogus_mx that holds the IP
addresses in nameserver records along with the type of response that you
want to give to them (see Appendix C for a full list of responses). Here’s
an example map file:

bogus networks

9

Chapter 8

0.0.0.0/8 550 Mail server in broadcast network

10.0.0.0/8 550 No route to your RFC 1918 network

127.0.0.0/8 550 Mail server in loopback network

255.0.0.0/4 550 Mail server in class D multicast network
192.168.0.0/16 550 No route to your RFC 1918 network

spam havens

69.6.0.0/18 550 REJECT Listed on Register Of Known Spam Operations @
wild-card MTA

64.94.110.11/32 550 REJECT VeriSign Domain wildcard @

® This network was listed on spamhaus.org (http://www.spamhaus.org/sbl/
sbl.lasso?query=5BL6636) as a network known to originate spam when we

wrote the book.

® This host was known to act as a wildcard MTA at the time of this writing.

NOTE

Since we’re editing a CIDR type map, which is a sequential map type (see
Chapter 5), you need not and cannot convert it using postmap. Postfix will use
the file as is. Simply add the check_sender_mx_access option with the map as an
argument to our smtpd_recipient_restrictions parameter. It might look like this:

smtpd_recipient_restrictions =
reject_non_fqdn_recipient
reject non_fqdn_sender
reject_unknown_sender domain
reject_unknown_recipient_domain
permit_mynetworks
reject_unauth_destination
check_recipient_access hash:/etc/postfix/roleaccount_exceptions
reject_non_fqdn_hostname
reject_invalid_hostname
check_helo_access pcre:/etc/postfix/helo_checks
check_sender_mx_access cidr:/etc/postfix/bogus_mx
permit

The restriction takes effect after reloading Postfix. You can see the
restriction’s effect in the mail log:

Sep 17 12:19:23 mail postfix/smtpd[3323]: A003D15C021: reject: RCPT from
unknown[61.238.134.162]:
554 <recipient@example.com>: Sender address rejected: VeriSign Domain
wildcard;

from=<alli.k_lacey mq@joymail.com> to=<recipient@example.com> proto=ESMTP
helo=<example.com>

You can check on the IP address with the host command:

host -t mx joymail.com
host -t a joymail.com
joymail.com has address 64.94.110.11

This domain actually exists now; it looks like it was registered in October of 2003.

Bounces to Multiple Recipients

In the “Empty Envelope Sender” section, you learned that you should not
block empty envelope senders. There is one exception to this rule—you
should block mail with an empty envelope sender sent to multiple recipients,
because there is currently no known legitimate use of multi-recipient status
notifications, so any such messages are likely to be illegitimate.

To reject messages from an empty envelope sender to multiple recip-
ients, add the reject_multi_recipient_bounce option to your smtpd_recipient_
restrictions list. It can appear just about anywhere in the restriction list, but
the following is an example where it appears after the permit_mynetworks option.

Using Message Transter Resirictions 97

98

Chapter 8

smtpd_data_restrictions =
reject_multi_recipient_bounce

As stated in the documentation, reject_multi_recipient_bounce can be
used reliably only in smtpd_data_restrictions, when all the recipients are
known.

You can test this with a manual connection, just as you did for earlier
restriction options. Submitting an empty envelope sender and multiple
recipients should result in a refusal of service, as shown in the following
session:

$ telnet localhost 25

220 mail.example.com ESMTP Postfix
EHLO client.example.com
250-mail.example.com
250-PIPELINING

250-SIZE 10240000

250-VRFY

250-ETRN

250 8BITMIME

MAIL FROM:<>

250 Ok

RCPT TO: <recipienti@example.com>
RCPT TO: <recipient2@example.com>
550 : Recipient address rejected: Multi-recipient bounce
QUIT

221 Bye

Using DNS Blacklists

A blacklist DNS server is a server that tells you about resources (such as IP
addresses, envelope senders, and domains) that are probably untrustworthy.
Blacklists can be very useful for blocking mail sent from clients to your server
if you choose the right blacklist. However, picking the wrong blacklist might
result in your server refusing mail that you may consider legitimate. Be sure
to check a blacklist’s policy before using it. Any site running a blacklist
should list the criteria that it applies when blacklisting a resource, and it
should publish and provide a straightforward procedure for removing
resources that no longer need to be blacklisted.

If you're looking for a blacklist, one place to start is dmoz.org (http://
dmoz.org/Computers/Internet/Abuse/Spam/Blacklists).

CAUTION All blacklists are based on the domain name service, meaning that Postfix must per-

NOTE

Jorm DNS lookwps. Uncached DNS lookups can take up to a second, and if they time
oul, the rate at which the server can accept messages will drop considerably. Therefore,
blacklist checks are relatively expensive in terms of latency. You should always use them
as a last resort in your list of vestriction options.

Rejecting Blacklisted Clients

You can reject blacklisted clients using DNSBL (DNS-based Blackhole List)
blacklists. Postfix has a reject_rbl_client restriction option that takes the
FQDN hostname of the blacklist server as an argument. Here’s an example
of the option in use:

smtpd_recipient_restrictions =
reject_non_fgdn_recipient
reject_non_fqdn_sender
reject_unknown_sender_domain
reject _unknown recipient domain
permit_mynetworks
reject_unauth_destination
check_recipient_access hash:/etc/postfix/roleaccount_exceptions
reject_non_fqdn_hostname
reject_invalid_hostname
check_helo_access pcre:/etc/postfix/helo_checks
reject_rbl_client relays.ordb.org
permit

After reloading Postfix, the new option takes effect.

To see if a client is listed in a DNSBL list, invert the order of the four octets of the cli-
ent’s IP address (that is, change a.b.c.d tod.c.b.a), append rbl.domain (such as
relays.ordb.org), and look wp the vesull. If the host is blacklisted, you will get a
response pointing to the oviginal IP address, as in this example:

$ host 2.0.0.127.relays.ordb.org
2.0.0.127.relays.ordb.org A 127.0.0.2

Multivalue Results

Postfix can handle this additional information (a host isn’t just listed, but the
IP address returned makes it possible to distinguish why it is listed). For
example, the following configuration rejects messages from any host that
maps to an A record of 127.0.0.2 in our imaginary domain.tld blacklist:

reject_rbl_client domain.tld=127.0.0.2

Using Message Transfer Resirictions 99

100

Chapter 8

Rejecting Blacklisted Sender Domains

In addition to restricting mail from IP addresses, you can block mail from
blacklisted sender domains. This kind of blacklist is called a right-hand-side
blacklist (RHSBL). Configuring Postfix for an RHSBL involves the same
procedure. The example in this section uses a special blacklist at dsn.rfc-
ignorant.org:

www.rfc-ignorant.org mission statement:

We maintain a number of lists (at present dsn, abuse,
postmaster, bogusmx and whois) which contain domains whose
administrators choose not to obey the RFCs, the building
block “rules” of the net.

Itis important to note that NOTHING requires ANYONE to
comply with an RFC (pedantically a “Request for
Comments”), however, the “cooperative interoperability”
the net has enjoyed is based upon everyone having the same
“rule book” and following it. A listing here simply implies
that a site has chosen not to implement the conditions
described in a particular RFC. It is, of course, up to other
sites to decide for themselves whether or not they wish to
communicate with sites that have not chosen to implement,
say, RFC2142, and have a working <abuse@domain> address.

—dredd, www.rfc-ignorant.org

There are many MTAs that do not accept mail in the ways that the RFCs
mandate (for example, they might refuse an empty envelope sender), for a
number of erroneous reasons, including these:

¢ bogus mail from anonymous senders not allowed

¢ empty sender disallowed (to combat the spam problem)

Comment to these error messages of non—RFC-compliant mail servers:
Anybody can forge anybody’s email address. You could be sending out email
as president@whitehouse.gov, and it would be just as anonymous as an empty
envelope sender.

Spam can be sent with arbitrary senders, but bounces can only be sent
with the empty envelope sender.

Any mail server that blocks empty envelope senders prohibits its users
from knowing that their mail may have been rejected by another mail server,
because their server blocks the bounce sent by the other RFC-compliant
server, which uses an empty envelope sender, just as described in the RFC:

RFC 2821 explicitly states that an MTA must accept mail with an empty
return path (envelope sender), because “the use of the empty sender when
sending a bounce prevents an undeliverable bounce from looping between
two systems.”

Postfix has a reject_rhsbl_sender restriction option that strips the local-
part from any email address and uses the domain to query a blacklist (such
as dsn.rfc-ignorant.org). If the client’s envelope sender domain is in the
blacklist, Postfix rejects the incoming message. Like other blacklist options,
you should place this option at the end of the list, as in this example:

smtpd_recipient_restrictions =
reject non_fqdn_recipient
reject_non_fqdn_sender
reject_unknown_sender_domain
reject_unknown_recipient_domain
permit_mynetworks
reject_unauth_destination
reject_multi_recipient_bounce
reject_rbl_client relays.ordb.org
check_recipient_access hash:/etc/postfix/roleaccount_exceptions
reject_non_fqdn_hostname
reject invalid hostname
check_helo_access pcre:/etc/postfix/helo_checks
reject_rhsbl_sender dsn.rfc-ignorant.org
permit

A reload puts the change in effect, and you can test this by connecting to
your server and using an envelope sender from a domain listed at dsn.rfc-
ignorant.org, as in this example (sender@example.com is the official test address):

$ telnet localhost 25

220 mail.example.com ESMTP Postfix

EHLO client.example.com

250-mail.example.com

250-PIPELINING

250-SIZE 10240000

250-VRFY

250-ETRN

250 8BITMIME

MAIL FROM:<sender@example.com>

250 Ok

RCPT TO: <recipient@example.com>

554 Service unavailable; Sender address [sender@example.com] blocked \
using dsn.rfc-ignorant.org; Not supporting null originator (DSN)

QuIT

221 Bye

Manual Blacklist Check

Checking a domain in an RHSBL is similar to the procedure for checking an
IP address, except that you don’t have to reverse the order of any elements.
Simply append the blacklist server name to the domain that you want to
check, and do a DNS lookup.

Using Message Transfer Restrictions 101

102

Chapter 8

The following is a check for a domain that’s not in the blacklist:

$ host postfix-book.com.dsn.rfc-ignorant.org
Host postfix-book.com.dsn.rfc-ignorant.org not found: 3(NXDOMAIN)

A blacklisted domain will look like this:

$ host example.com.dsn.rfc-ignorant.org
example.com.dsn.rfc-ignorant.org has address 127.0.0.2

Exceptions for Blacklisted Sender Domains

If you want to reject mail from mail servers that do not follow the rules,
but you need to maintain communication with a particular domain that
would otherwise be rejected by your restrictions, you can create a list of
exceptions. Use the check_sender_access option with a map to implement
the exception.

First, create a file such as /etc/postfix/rhsbl_sender_exceptions containing
users and domains you want to accept messages from. For example, the
following file permits mail from all users from example.com and for the single
user sender@example.org:

example.com 0K
sender@example.org OK

With this file in place, use postmap hash:/etc/postfix/rhsbl_sender_
exceptions to build the map. Then add the check_sender_access option
immediately before the reject_rhsbl_sender option, as in this example:

smtpd_recipient_restrictions =
reject non_fqdn recipient
reject_non_fqdn_sender
reject_unknown_sender_domain
reject unknown recipient domain
permit_mynetworks
reject_unauth_destination
reject_multi_recipient_bounce
reject_rbl_client relays.ordb.org
check_recipient_access hash:/etc/postfix/roleaccount_exceptions
reject_non_fqdn_hostname
reject_invalid_hostname
check_helo_access pcre:/etc/postfix/helo_checks
check_sender_access hash:/etc/postfix/rhsbl_sender_exceptions
reject_rhsbl_sender dsn.rfc-ignorant.org
permit

NOTE

This example used check_sender_access, but heve is the full list of exception options:

e check sender access

e check client _access

e check_helo_access

e check_recipient access

You already saw check_helo_access in the section “Preventing Obvious

Forgeries.” The Postfix documentation explains the remaining two.

Verifying the Sender

The crown jewel of the Postfix antispam tools is sender address verification,
which verifies that the envelope sender exists in the sender’s domain: if the
sender does not exist, Postfix does not accept the message.

Unfortunately, this feature is expensive because the verification process

takes time and consumes additional system resources. These are the steps

involved:
1. A client submits an envelope sender.
2. Postfix generates and queues a probe message to the envelope sender.

Ll

Postfix looks up the MX or A record of the envelope sender’s domain.

Postfix tries to connect to the sender’s mail server. If it cannot connect

to the remote server, smtpd defers the decision of whether to accept the

message by returning a temporary error code of 450 to the client. Mean-

while, Postfix keeps trying to verify the address.

Postfix initiates an SMTP session with the remote server.

Postfix submits the earlier envelope sender as the envelope recipient to

the remote mail server.

Based on the remote server’s response, Postfix can do one of two things:

¢ If the remote mail server accepts the recipient (the original envelope
sender), Postfix disconnects, destroys the probe message, and accepts
the message from the original client.

* If the remote mail server rejects the recipient (the original envelope
sender), Postfix disconnects, destroys the probe message, and rejects
the message from the client.

With address verification active, normal mail will suffer a short delay of

up to nine seconds while Postfix checks the address for the first time.
However, Postfix caches the status of an address, so subsequent messages
have no delay.

If the verification process takes longer than nine seconds, smtpd rejects

the mail from the client (sending machine) with a 450 reply. Normal mail
clients will connect again after some delay, but hijacked proxies won't,
because they’re just relaying SMTP commands, and the person who's
controlling the proxy won’t want to waste any more time with the address.

Using Message Transfer Restrictions

104

NOTE

Chapter 8

Sender-Address Verification Configuration

To enable sender-address verification, add the reject_unverified_sender
option to your smtpd_recipient_restrictions parameter, as shown in this
example:

smtpd_recipient_restrictions =
reject_non_fqdn_recipient
reject_non_fqdn_sender
reject_unknown_sender_domain
reject_unknown_recipient_domain
permit_mynetworks
reject_unauth_destination
reject_multi_recipient_bounce
reject_rbl_client relays.ordb.org
check_recipient_access hash:/etc/postfix/roleaccount_exceptions
reject_non_fqdn_hostname
reject invalid hostname
check_helo_access pcre:/etc/postfix/helo_checks
check_sender_access hash:/etc/postfix/rhsbl_sender_exceptions
reject_rhsbl_sender dsn.rfc-ignorant.org
reject_unverified sender
permit

There are several options other than reject_unverified_sender that you
can add to your restrictions. However, the parameters come with reasonable
defaults, and they serve to tune sender-address verification rather than
configure it. The following subsections describe the most common changes
to sender-address verification behavior. You can find additional tuning
parameters in the ADDRESS_VERIFICATION_README file that comes with your
Postfix installation.

The Probe’s Envelope Sender
When Postfix generates the probe message to verify the sender in question, it
must introduce itself to the remote server with an envelope sender of its own.
You can configure this address with the address_verify sender parameter. The
default is postmaster@$myorigin.

If you'd like to set a different probe-envelope sender, add the address_
verify sender parameter to main.cf, as in this example:

address verify sender = sender@example.com

Of course, this sender must exist, because other servers might use the
same sender-address verification against you.

The recipient address specified as a parameler for the address_verify sender is exempt

Jfrom any restrictions.

Caching

By default, Postfix keeps verified senders in memory. If you reload or restart
Postfix, you will lose them, unless you specify an optional database to perma-
nently store the addresses. To use a database, set the address_verify_map
parameter to a database path (make sure that you pick a filesystem that has
plenty of space). Here’s an example:

address_verify_map = btree:/var/spool/postfix/verified_senders

After a reload, Postfix creates the database and proceeds to add both
positive and negative verifications. If you want to disable collecting the
negative verifications, set the address_verify_negative_cache parameter in
main.cf as follows:

address_verify_negative_cache = no

Selective Sender-Address Verification

As the load on your mail server increases, sender-address verification is
more likely to become a bottleneck. At this point, you should switch to
selective sender-address verification.

Selective sender-address verification works by creating a map of
common envelope sender domains that spammers typically use. If
an incoming envelope sender domain is in the map, Postfix verifies the
sender, but otherwise it does not bother. Create a map file such as /etc/
postfix/common_spam_senderdomains, and set the reject_unverified sender
parameter as the action to be taken if the envelope sender matches the
domain. Here's an example of how such a file looks:

hotmail.com reject_unverified_sender

web.de reject_unverified_sender
msn.com reject_unverified sender
mail.ru reject_unverified_sender

The access(5) manual page explains that the right side of this map is the
name of avalid restriction or smtpd_restriction_class. In this example, Postfix
does one of two things when a client initiates message transmission:

e If the sender’s domain matches an entry in common_spam_senderdomains,
the map lookup returns reject_unverified_sender, so Postfix verifies the
envelope sender. If it’s valid, reject_unverified_sender returns DUNNO, and
Postfix evaluates the next restriction. If the address is invalid, Postfix
rejects the message.

¢ If the sender domain does not match anything in common_spam_
senderdomains, the map lookup fails, the selective evaluator returns
DUNNO, and Postfix evaluates the next restriction without verifying the
sender address.

Using Message Transfer Restrictions 105

106

Chapter 8

After creating the map, convert it to a database using the postmap hash:/
etc/postfix/common_spam_senderdomains command. Finally, replace the existing
reject_unverified_sender option with the check_sender_access option and map
argument. Here’s an example that uses the hash:/etc/postfix/common_spam_
senderdomains map:

smtpd_recipient_restrictions =
reject_non_fqdn_recipient
reject_non_fqdn_sender
reject_unknown_sender_domain
reject_unknown_recipient_domain
permit_mynetworks
reject_unauth_destination
reject multi recipient bounce
check_recipient_access hash:/etc/postfix/roleaccount_exceptions
reject_non_fqdn_hostname
reject_invalid_hostname
check_helo_access pcre:/etc/postfix/helo_checks
check_sender_access hash:/etc/postfix/rhsbl_sender_exceptions
reject_rhsbl_sender dsn.rfc-ignorant.org
check_sender_access hash:/etc/postfix/common_spam_senderdomains
permit

You can take this one step further and introduce criteria other than the
envelope sender, such as content. Create another map named common_spam_
senderdomain_keywords that includes domain name keywords to trigger sender-
address verification, such as this example:

/sex/ reject_unverified_sender
/girl/ reject_unverified_sender
/sell/ reject unverified_sender
/sale/ reject_unverified_sender
/offer/ reject unverified sender
/power/ reject_unverified_sender

Then add another check_sender_access option pointing to the map:

smtpd_recipient_restrictions =
reject_non_fqdn_recipient
reject_non_fqdn_sender
reject_unknown_sender_domain
reject_unknown recipient domain
permit_mynetworks
reject_unauth_destination
reject_multi_recipient_bounce
check_recipient_access hash:/etc/postfix/roleaccount_exceptions
reject_non_fqdn_hostname
reject_invalid_hostname
check_helo_access pcre:/etc/postfix/helo_checks

check_sender_access hash:/etc/postfix/rhsbl_sender_exceptions

reject rhsbl sender dsn.rfc-ignorant.org

check_sender_access hash:/etc/postfix/common_spam_senderdomains
check_sender_access regexp:/etc/postfix/common_spam_senderdomain_keywords
permit

Restriction Process Order

Antispam protection is expensive from a system resource point of view. The
following restriction listing shows how to order antispam options.

smtpd_recipient_restrictions =
reject_non_fqdn_recipient
reject non_fqdn_sender
reject_unknown_sender domain
reject_unknown_recipient_domain
permit_mynetworks @
(permit_sasl authenticated)
(pop-before-smtp)
reject_unauth_destination
check_recipient_access hash:/etc/postfix/roleaccount_exceptions
reject_multi_recipient_bounce
check helo access pcre:/etc/postfix/helo checks @
reject _non_fqdn_hostname
reject_invalid_hostname
check_sender_mx_access /etc/postfix/verisign_mx_access ©
check_sender access hash:/etc/postfix/rhsbl sender exceptions @
reject_rhsbl sender dsn.rfc-ignorant.org ©

check_sender_access hash:/etc/postfix/common_spam_senderdomains @
check_sender access regexp:/etc/postfix/common_spam senderdomain_keywords

permit

General rules to order “cheap” before “expensive” restrictions:

O Place all antispam options after permit_mynetworks so that they apply to
external clients (clients not listed in mynetworks) only.

® You can reject any client that uses your server’s hostname without any
further investigation. It doesn’t matter if they use a non-FQDN hostname
or an invalid hostname.

© This option marks the beginning of expensive restrictions.
check_sender_mx_access requires one or two DNS lookups. If you're run-
ning a caching nameserver, you can resolve DNS queries locally.

@ This map goes in front of the blacklist option because it contains
exceptions for users and domains that might otherwise be rejected.

© This option is expensive, requiring a query to a remote system (the
DNS server for dsn.rfc-ignorant.org) that might be under a heavy load
or temporarily out of order. That’s why it comes close to the end of the
restriction option list.

Using Message Transfer Resirictions 107

108

@ The two most expensive actions come last. If triggered, Postfix must
create a dummy message, attempt to deliver it, and register the result.
Very expensive. Therefore, it is a last resort.

Uses for Restriction Classes

Chapter 8

The example to follow in this section restricts envelope senders in two ways.
First, it requires that mail from the outside not have a sender address inside
your domain; and second, it states that mail from inside clients must contain
a sender address inside your domain.

The idea is to let Postfix first check to see if an incoming client
connection is from your network:

1. If the client is on your network, Postfix sends the client to a restriction
class. This class contains a check for the envelope sender address.
¢ If the envelope sender matches your domain wildcard, the check
returns OK. Postfix stops evaluating restrictions and allows the client to
proceed.
* If the envelope sender does not match the domain wildcard, the next
restriction option is reject, so Postfix refuses service to the client.

2. If the client does not belong to your network, Postfix does not use the
restriction class. Instead, it moves along to the next restriction option,
which checks the envelope sender address.

¢ If the client uses your domain as part of the envelope sender, Postfix
refuses service.

* [fthe client does not use your domain as part of the envelope sender,
it passes the test and moves along to the next restriction.

To implement what we just wrote about, create a map file containing a
list of IP addresses and networks inside your network. You can name the file
/etc/postfix/internal_networks; it should look like this:

192.0.34 has_our_domain_as_sender
192.168 has_our_domain_as_sender
192.168.1 has_our_domain_as_sender

Then, create another map file named /etc/postfix/our_domain_as_sender
containing your domain wildcard and the empty envelope sender (remem-
ber that your server should accept this without question); this is the list of
envelope sender domains that internal clients may use. The map file will look
like this:

example.com 0K
<o 0K

Now, create a map file that contains the domains that external clients

may not use in their envelope sender. For this example, we’ll use the
filename /etc/postfix/not_our_domain_as_sender, containing just one line:

example.com 554 Do not use my domain in your envelope sender

After creating maps for these two map files with the postmap command,
set the restriction class and the required restriction options in your main.cf

file:

smtpd_restriction_classes =
has_our_domain_as_sender

has_our_domain_as_sender =
check sender access hash:/etc/postfix/our domain_as_sender
reject

smtpd_recipient_restrictions =
check_client_access hash:/etc/postfix/internal_networks
check_sender_access hash:/etc/postfix/not_our domain_as_sender
reject_unauth_destination

permit

As usual, you will need to reload the Postfix configuration to put the

changes into effect.

Using Message Transfer Restrictions

109

HOW BUILT-IN CONTENT
FILTERS WORK

\y

-

L
Checks examine the content of a message

>
2
and execute a predefined action based

\‘ on the content. This chapter shows you the
checks that are available and what actions Postfix
provides for enforcing content control.

Checks complement restrictions. Whereas restrictions supervise the SMTP
dialog, checks control the content of a message. At first, though, you might
see checks as being very different from restrictions. Checks are easy to
enable, but the syntax used to create search patterns can become rather
complicated because checks use regular expressions to define search
patterns.

Because Postfix focuses on being an MTA, the built-in checks are not
designed to replace a full-featured content scanner; rather, they provide the
means for simple tasks. Here are some of the things you can do with checks:
e Block messages generated by certain programs, such as your SAP mail

gateway.

¢ Block messages with specific subject lines.

¢ Weed out messages containing potentially harmful attachments.

¢ Remove pieces of information from message headers.

NOTE [f you have never worked with regular expressions before, you may need to spend some
time learning the basics. Mastering Regular Expressions, 2nd Edition by Jeffrey
E.F Friedl is an excellent book on the subject.

How Do Checks Work?

Checks scan messages for a set of search patterns. If a pattern matches any
content in a message, an action is taken. Postfix can apply separate filters to
distinct sections of a message; the sections currently supported by Postfix are
as follows:

e Message headers
¢ MIME headers
e Message body parts, including attachments
e Message headers of attached messages

To create a set of checks, you define separate search patterns using
separate maps, and then assign these maps to the different check parameters
that apply to different sections. Postfix uses the maps with a built-in MIME
parser to examine the content of a message. The parser works like the egrep
command; it can only recognize plaintext words one line at a time. Here’s
how the process works:

1. The parser steps through a message line by line.

2. The parser decides which message section the current line belongs to.

3. Ifa check exists for the section, Postfix uses the assigned map to search
the message for matching patterns.

4. If the search pattern matches, Postfix triggers an action, and the execu-
tion of other checks is discontinued. Therefore, the first match “wins.”

As you might have guessed by now, checks are CPU-intensive, and you
can also see that the order of search patterns in a map can become crucial,
because an earlier match causes the check process to use less CPU time.

Applying Checks to Separate Message Sections
Postfix uses a separate configuration parameter for each message section it

knows. The check parameters are as follows (note that they are not enabled
in the main.cf file by default).

112 Chapter @

CAUTION

header_checks
These apply to the message header—that is, to everything from the first
line of the message to the first blank line. This also includes headers that
span multiple physical lines.

body_checks

These apply to the message body; the parser considers the body to be
everything between headers.

Extensive body_checks commands can be very CPU-intensive, slowing down your
machine noticeably, because a body check scans every line of a body segment and com-
pares the line to every regular expression that you define in the body_checks map.

To prevent excessive CPU overload, Posifix checks only the first 51,200 bytes of the
current body segment by defaull. You can increase this limit with the body checks_
size_limit parameter. You can also handle an increased load by delegating the content
inspection to a different application on a separate machine by using the content_filter
Jeature described in Chapter 11.

mime_header_checks

These apply to MIME headers in the top-level message headers, MIME
entity headers, and to MIME headers in nested message RFC 822 mes-
sage headers (see Figure 6-3).

nested_header_checks
These apply to headers of attached email messages except MIME head-
ers. These checks work only on the headers of nested message/rfc822 mes-
sages, except for the MIME headers listed for mime_header_checks above.

What’s So Special about These Parameters?

Postfix 2.x handles the body of a message as n body segments, and each
section is marked with a MIME header. This MIME processing is enabled by
default, but you can disable it using disable_mime_input_processing = yes in
your main.cf file.

The MIME parser makes a decision for each line it reads: Does the line
belong to a header or to a body segment? Postfix applies checks based on this
decision. If a message segment has mail headers (that is, if it is an attached
message of type message/rfc822), those headers are evaluated by
nested header checks.

Anything within a segment after these nested headers is evaluated by
body_checks, up to the limit specified by the body_checks_size_limit parameter.
For example, if you have a message with five 100KB MIME segments (or
attachments), Postfix checks the first body_checks_size_limit of each segment.

Postfix uses mime_header_checks to evaluate each MIME header (the start
of every new segment). If there are mail headers after any MIME header,
they are evaluated by nested_header_checks on every segment.

How Built-in Content Filters Work 113

Figure 9-1 shows which checks are applied to each line of a message.

FROM: Sender <sender@example.com»

TO: Recipient <recipient@example.org>
Date: Sun, 11 Apr 2004 22:36:51 +0200
Subject: Mail and email

header_checks

new certificate.

--2055YaxWCcQjTEYO

Content-Type: application/zip

Content-Description: Attachment

Content-Disposition: attachment; filename="certificate.zip"
Content-Transfer-Encoding: baseb4

mime_header_checks

UEsDBAOAAAAAAK61/SEmUZZNDAA3SY /VXGEAPOBIAFBCH
RhY2htZW50TQpQSMECFWMKAAAAAACUT FOuplGczQwAAAAF
MAAAADEANAAAAAAABAAAALTEAAAAAYXROYWNObWVUACS
0eHRVVAUAA+Fc] 9VeAAAUE s FBEAAAAABAAEASOAMAEAA
--2055YaxWCcQjTEYO0- -

body_checks

Dear Recipient,
body_checks Attached to this email you can find your

Figure 9-1: Posifix decides on every line of the message which check to apply

When Does Postfix Apply Checks?

A client transports a message after successfully completing the initial SMTP
dialog. Thus, Postfix processes *_checks after the smtpd_*_restrictions have
been processed. Figure 9-2 shows when the Postfix cleanup daemon takes care
of checks.

$ telnet mail.example.com 25

220 mail.example.com ESMTP Postfix
HELO client.example.com
250-mail.example.com

MAIL FROM:<sender@example.com>

250 Ok

RCPT TO:<recipient@example.com>
250 Ok

DATA

354 End data with <CR»<LF».<CR><LF>

header_checks To: "Recipient” <recipient@example.com>

{ From: "Sender" <sender@example.coms
Date: Sat, 17 May 2003 15:24:43 +0200

body checks, [=—®| Here comes the mail content. . . .

mime_header_checks,
nested_header_checks 250 Ok: queued as oEAFFE1CE5

QUIT

221 Bye

Figure 9-2: Checks are applied after restrictions and only to the confent of the message

114 Chapler @

What Actions Can Checks Invoke?

You can define only one action per search pattern. Postfix currently supports
these actions:

REJECT [optional text...]
Declines acceptance of the message. The optional text will be sent back
to the client trying to deliver the message. Postfix will also record the text
in the mail log.

IGNORE
Removes the line in the message that matches the search pattern in
the check.

WARN [optional text...]
Causes Postfix to write a notice to the mail log. If there is optional
text, Postfix logs it as well. Postfix will deliver the message without any
modification.

HOLD [optional text...]
Places the message in the hold queue until the postmaster picks it up
and decides what to do with it. Postfix logs the matched header/body
line with the optional text.

DISCARD [optional text...]
Tells the mail client that the message has been successfully delivered,
but silently deletes the message instead of transporting it to the final
destination. If there is optional text, Postfix logs it together with the
matched text in the mail log.

FILTER transport:nexthop
Sends the message to a filter (a service defined in master.cf that trans-
ports the message to another processing system, such as a virus scanner).
You will learn more about defining filters in Chapter 11.

REDIRECT user@domain
Reroutes the message to the address specified instead of to the original
recipient(s), and it overrides any FILTER action.

How Built-in Content Fillers Waork 115

USING BUILT-IN CONTENT
FILTERS

\y

-

\"? Postfix can examine the content of a
\ message with tables of patterns and
‘ actions, as described in Chapter 9. This
chapter shows you how to implement these

patterns and actions. Keep in mind that checks are

for simple content filtering. For more complicated

tasks, refer to Chapter 11.

Checks look for characters in a message and can also modify a message.

The names of the configuration parameters that enable checks end with

_checks, and whether you use header_checks, body_checks, mime_header_checks,

or nested_header checks, all follow the same scheme:

1. Postfix examines a message line by line against a map of patterns made
out of regular expressions (regexps) or Perl regular expressions (PCREs).

2. If aline matches the regular expression, Postfix takes the action defined

for the expression and examines the next line of input.

CAUTION

This chapter’s examples make heavy use of the line continuation syntax that Postfix
offers to improve readability on paper. Namely, a line starting with whitespace charac-
ters continues the preceding line.

Checking Postfix for Checks Support

NOTE

Chapter 10

Postfix supports header or body filtering by default, but because it may use
regexp and/or PCRE maps, you should find out whether Postfix supports
both types or only regexps. To check which maps your Postfix supports, run
postconf -m to report all the map types your system supports. The Postfix
package in the following example supports both regexp and PCRE, among
several other maps:

$ postconf -m

btree
cidr
environ
hash
nis
pcre

proxy
regexp
static
tep
unix

All systems should support regexp tables by default. If your system has
performance problems when it uses regexp-style maps (or even worse, if your
system uses a buggy regexp implementation), you can install the PCRE
libraries and headers and rebuild Postfix with PCRE support.

Building Postfix with PCRE Map Support

To build Postfix with PCRE support, you need the PCRE libraries and header
files. You can get them in a development package from your distribution, or
you can download the PCRE source code at http://www.pcre.org and install it
by hand.

Configure Postfix with PCRE support by adding -DHAS_PCRE and a -I
preprocessor flag for the PCRE include directory to CCARGS, and the PCRE
library and path flags to AUXLIBS. For example, let’s say that pcre.h is in /usr/
local/include, and pcre.a is in /usr/local/lib:

$ CCARGS="-DHAS_PCRE -I/usr/local/include” \
AUXLIBS="-L/usr/local/lib -lpcre" \
make makefiles

$ make

Solaris needs -R/usr/local/lib as well.

Safely Implementing Header or Body Filtering

Regular expressions can get to be quite complicated, and you might end up
with a pattern that doesn’t work, that matches more than you intended, or
that you just don’t understand anymore.

To help you debug patterns, Postfix offers the WARN action. If you use this
action on the right side of your pattern, Postfix delivers the message if the
expression matches, and it also writes a note to the mail log. After you're sure
that your pattern works, you can safely change WARN to the desired action.

The safe procedure for adding checks is as follows:

1. Add your pattern to the map with WARN as the action.

2. Create a file that contains an expression that matches your filter pattern.
3. Verify that the pattern in the map matches the test pattern.

4. Set the check in the main Postfix configuration file.

5. Test it with real mail.

Adding a Regular Expression and Setting a WARN Action

The first step is to add the pattern you want to check to a map, and to define
a WARN action for when the content of a message matches the test pattern. The
example we’ll use in this section tests for a filter pattern in a Subject header,
but you can use the procedure described here for other headers and other
*_checks parameters.

Add the filter pattern to the /etc/postfix/header_checks file. This file
holds the map for header_checks. Here’s an example:

/"Subject: FWD: Look at pack from Microsoft/
WARN Unhelpful virus warning

Creating a Test Pattern

All you need to do to create a test pattern is put a matching message in a file
such as /tmp/testpattern. The following will do for this example:

From: dingdong@example.com
Subject: FWD: Look at pack from Microsoft
blah blah

Does the Regular Expression Match the Test Pattern?

Test your filter pattern by feeding the checks map and the test pattern to
postmap. For example, run this command:

$ postmap -q - regexp:/etc/postfix/header_checks < /tmp/testpattern

Using Built-in Content Filters]]9

If it works, the command should print the matching line in the test
pattern, like this:

Subject: FWD: Look at pack from Microsoft WARN Unhelpful virus warning

If the pattern doesn’t match, the postmap command doesn’t print
anything.

Setting the Check in the Main Configuration

If everything looks good so far, you can edit your main.cf file to use the file
containing the header_checks you just created and tested:

header checks = regexp:/etc/postfix/header checks

Reload Postfix and send a test message containing the same test pattern.

Testing with Real Mail

To test the filter with real mail, feed your earlier test pattern to Postfix. This
command will do it:

$ /usr/sbin/sendmail recipient@example.com < /tmp/testpattern

Now, examine your mail log to verify that Postfix logged the warning for
the test pattern. The second line in the following log excerpt is the warning
message:

Mar 30 17:17:52 mail postfix/pickup[2455]: 53CAB633B3: uid=7945 from=<sender@example.com>

Mar 30 17:17:52 mail postfix/cleanup[2461]: 53CAB633B3: warning: header Subject: FWD: Look at
pack from Microsoft from local; from=<sender@example.com> to=<recipient@example.com>:
Unhelpful virus warning

Mar 30 17:17:52 mail postfix/cleanup[2461]: 53CAB633B3:
message-id=<20040330151752.53CAB633B3@mail.example.com>

Mar 30 17:17:52 mail postfix/qmgr[2456]: 53CAB633B3: from=<sender@example.com>, size=346,
nrcpt=1 (queue active)

After you're confident that your filter pattern works, you can safely
change the action from WARN to an action that actually does something, such
as REJECT or DISCARD.

Checking Headers
Postfix can perform a variety of actions with header_checks, such as rejecting

or holding messages, removing headers, or discarding, redirecting, or
filtering messages. This section discusses how to implement those actions.

120 Chapter 10

Rejecting Messages

Postfix can reject messages using the REJECT action. You can use this action to
block messages that match a pattern, such as those that contain a particular
Subject header.

The rejection prevents the messages from entering your system, and
therefore keeps them away from a computationally expensive virus checker,
spam detector, or (possibly worse) your users. We’ll look at a few examples.

This pattern rejects useless virus warnings generated by ScanMail (which
always warns the sender, even if the virus fakes the sender address):

/*Subject: ScanMail Message: To Sender, sensitive content found and action/
REJECT Unhelpful virus warning

If you'd like to block messages with an incorrect Undisclosed-recipients
header, you can use the following pattern. This matches the situation where
To: <Undisclosed Recipients> occurs in the headers (with or without the
brackets, with or without the final “s” at the end). (A correct Undisclosed-
recipients header would be To: undisclosed-recipients:;.)

/"To:.*<?Undisclosed Recipients?>?$/
REJECT Wrong undisclosed recipients header

This pattern is best described by its comment and accompanying message:

#
Spam that contains Subject: something 565876
#
/*Subject: . *[[:space:]. {5, }N(?#2[[:digit:]]1{2,}\)?%$/
REJECT More than 5 whitespaces and a number follow the Subject:

We’ve never seen To:...<> in headers of a valid message:

/2To: . * ¢/
REJECT To: <> in headers

Finally, some subject lines are just dead ringers for fraud spam. You
should get the idea from these four patterns. (Using different numbers for
each warning message makes it easier to debug false positives.)

#

Certain Subject lines are indicative of fraud spam.

#

/"Subject:.*is NOT being SEEN/ REJECT fraud spam #1
/"Subject:.*URGENT BUSINESS RELATIONSHIP/ REJECT fraud spam #2
/"*Subject:.*Confidential Proposal/ REJECT fraud spam #3
/"Subject: SEX-FLATRATE/ REJECT fraud spam #4

Using Built-in Content Filters]2]

122

Chapter 10

Holding Delivery

Postfix can hold the delivery of messages with the HOLD action. You can use
this to put suspicious messages “on hold” for further inspection. To look at
the messages, use postcat, and to let a message through, use postsuper -H. If
you’d like to delete a message from the Postfix queue, use postsuper -d.

Here’s a pattern that matches any message containing a Subject header
starting with Subject: [listname]. One use of this to hold mail to all users from
internal mailing lists until the after-business hours, when the system is not in
full use:

/*Subject: \[listname\]/
HOLD

Here’s a pattern that holds messages using a lone carriage return in
MIME headers. Most of these messages are viruses and spam, with the few
exceptions being from broken Windows installations of SquirrelMail:

/N\x/
HOLD Lone CR in headers indicates virus or spam!

Removing Headers

If you'd like to remove lines from headers, use the IGNORE action. You can use
this to hide information written to headers, such as the kind of MUA you use,
or to prune the Received headers that your internal mail servers, firewalls, or
virus scanners might add. Here’s one that removes the Received headers
added by a program Postfix had delegated the email to do something with it
by means of the content_filter directive (for example, from amavisd-new):

/"*Received: from localhost/
IGNORE

Here's another that removes the Sender header—some versions of
Outlook behave strangely when replying to a message that contains this
header:

/"Sender:/
IGNORE

Discarding Messages

Postfix can silently discard messages using the DISCARD action. For example,
you might want messages with a certain subject line to be removed without
anybody taking notice. Here’s a silly example.

/*Subject:.*deadbeef/
DISCARD No dead meat!

When Postfix discards a message, it logs the action as usual. For example,
you might see this in your mail log:

Apr 9 23:14:28 mail postfix/cleanup[11580]: BB92B15C009: discard: header Subject: deadbeef
from client.example.com[10.0.0.1]; from=<sender@example.com> to=<recipient@example.com>
proto=ESMTP helo=<client.example.com>: No dead meat!

Redirecting Messages

Postfix can reroute messages to another recipient using the REDIRECT action if
a pattern in the headers and the body matches. Here’s an example that gets
the point across (though we really don’t recommend it):

/Subject:.*deadbeef/
REDIRECT bigbrotheriswatchingyou@example.com

In the mail log, a redirected message will look like this:

Apr 9 23:20:38 mail postfix/smtpd[11873]: 9305215C009: client=client.example.com[10.0.0.1]
Apr 9 23:20:38 mail postfix/cleanup[11865]: 9305215C009: redirect: header Subject: deadbeef
from client.example.com[10.0.0.1]; from=<sender@example.com> to=<recipient@example.com>

proto=ESMTP helo=<client.example.com>: bigbrotheriswatchingyou@example.com

Apr 9 23:20:38 mail postfix/cleanup[11865]: 9305215C009:
message-id=<20040409212038.CK3406@example. com>

Apr 9 23:20:38 mail postfix/qmgr[11857]: 9305215C009: from=<sender@example.com>, size=1111,
nrcpt=1 (queue active)

Apr 9 23:21:08 mail postfix/smtp[11874]: 9305215C009:
to=<bigbrotheriswatchingyou@example.com>,
orig to=<recipient@example.com>, relay=none, delay=30, status=deferred (connect to example.com
[192.0.34.166]: Connection timed out)

Filtering Messages

Postfix can route messages to a content_filter (see Chapter 11) using the
FILTER action. For example, you can redirect certain classes of mail to
different kinds of transports based upon their headers.

This action overrides content_filter settings in your main.cf file and
requires you to configure different cleanup servers as well—one before the
filter, and one after the filter. Header_checks and body_checks must be turned
off in the second cleanup server, or you will create a loop! See Chapter 12
for more information on dealing with this problem (look for no_header_
body_checks and receive_override_options). The first of the following patterns
doesn’t send a message to a filter, and the second one does.

Using Built-in Content Filters 123

NOTE

/*To: . *@example\.org/ FILTER nofilter:dummy
/"To:.*@example\.com/ FILTER virusfilter:dummy

Keep in mind that this is just an example. You should not use it on a production
server! One message destined to recipients in both domains would match the first requ-
lar expression and would thus never be filtered (the first malch wins); the second action
would never be taken.

Filtered messages produce these sorts of messages in the mail log:

Apr 9 23:34:12 mail postfix/cleanup[12543]: 2B97315C00D: filter: header To:

nofilter@example.com from client.example.com[10.0.0.1]; from=<sender@example.com>

to=<nofilter@example.com> proto=ESMTP helo=<client.example.com>: nofilter:dummy

Apr 9 23:38:00 mail postfix/cleanup[12543]: 2299815C00E: filter: header To:
virusfilter@example.com from client.example.com[10.0.0.1]; from=<sender@example.com>
to=<virusfilter@example.com> proto=ESMTP helo=<client.example.com>: virusfilter:dummy

124

Checking MIME Headers

NOTE

Chapter 10

MIME headers apply to files attached to a message. By default, the
header_checks map is used for scanning MIME headers for patterns, unless
you define a separate map and tell Postfix to use it with the mime_header_checks
parameter.

It makes sense to define separate maps when you want to keep your mime_header_checks
map small as possible, only using the MIME header patterns if Postfix delects that
there’s an atlachment within the message.

First you need to create a map file to hold your MIME header patterns.
Let’s say you pick /etc/postfix/mime_header_checks, and it contains the
following checks:

Files blocked by their suffix

/name=\"(.*)\.(386|bat|bin|chm|cmd|com|do|exe|hta|jse|lnk|msi|ole)\"$/
REJECT Unwanted type of attachment $1.%2

/name=\"(.*)\. (pif|reg|rm|scr|shb|shm|shs|sys|vbe|vbs|vxd|x1|xs1)\"$/
REJECT Unwanted type of attachment $1.%2

In this example, Postfix looks for MIME headers that contain name="
followed by an arbitrary number of characters, followed by a literal dot (.).
A large submatch enclosed in parentheses follows, which contains several
prohibited extensions separated by a vertical bar (|). The regular expression
ends with the literal quote (\"), which also must be at the end of the line ($).

The action on the right side makes use of the optional text behind the
REJECT. In this example, the two submatches are being referenced with $1 (for
the first submatch—(.*)) and $2 (for the file extension).

So, if somebody sends an attachment named image.pif, then the mime
header line in the mail looks somewhat like this:

filename="image.pif"
and the error message constructed from this will be
Unwanted type of attachment image.pif
because $1 equals image, and $2 equals pif.
Now add the mime_header_checks parameter to main.cf file, giving it the
path to your map:

mime_header checks = pcre:/etc/postfix/mime_header checks

After reloading Postfix, the mime_header_checks parameter becomes
effective.

Checking Headers in Attached Messages

Postfix can apply separate actions to headers that appear in messages that are
attached to a message. By default, any header_checks parameter will take care
of these, but if you want to create a separate map (to save CPU cycles or to
create exceptions), you can use the nested_header_checks parameter to define
a separate map.

Like the other kinds of checks, you should create a separate map file,
such as /etc/postfix/nested_header_checks, to hold your checks. Here's a
sample that logs a message ID in a nested header:

/"Message-Id:/ WARN Nested Message-Id:
Now, add the nested_header_checks parameter to your main.cf file:
nested header checks = pcre:/etc/postfix/nested header checks

After reloading Postfix, you should be able to find log entries like
this one:

Apr 14 13:17:55 mail postfix/cleanup[32397]: 59C3115C02A: warning: header Message-ID:
<DIDL27HL1L4H87CA@example.com> from mgate22.so-net.ne.jp[210.139.254.169];
from=<> to=<recipient@example.com> proto=ESMTP helo=<mgate22.so-net.ne.jp>: Nested Message-Id:

NOTE The example in this section isn't really useful, because neither we nor the mailing list
could come up with a real-world scenario. If you need nested_header_checks, you'll
probably know it.

Using Built-in Content Filters 125

126

Checking the Body

CAUTION

Chapter 10

Scanning body parts is useful when you need to detect a pattern inside a
body part in order to raise an action. Like the other checks, you examine the
content for a given pattern using the body_checks parameter in combination
with a map that holds patterns and appropriate actions.

Body checks apply to all messages, both incoming and ouigoing, and to all senders
and recipients. Therefore, they also apply to mail sent to abuse and postmaster.

If yow implement a check for spam, people complaining about spam that was
supposedly sent from your networks cannot reach abuse and postmaster if their
complaints conlain the original spam that they received. You cannot override checks
for certain users in the current version of Postfix.

Start out with the usual map file, such as /etc/postfix/body_checks. Here
are some patterns and actions:

Skip over base 64 encoded blocks. This saves lots of CPU cycles.
Expressions by Liviu Daia, amended by Victor Duchovni.
~A[[:alnum:]+/]{60, }\s*$~ 0K

The preceding pattern matches base64-encoded blocks. Note that a tilde
(~) instead of the usual slash (/) is being used to delimit the regular expres-
sion, making it unnecessary to escape the slash within the regular expression.

Here are some patterns that contain known and unique patterns of spam
messages; Postfix will reject them:

SPAM
/(AS SEEN ON NATIONAL TV|READ THIS E-MAIL TO THE END)/
REJECT Spam #1
/We are shanghai longsun electrical alloy/
REJECT Chinese spammer from hell
/Do you want EVERYONE to know your business/
REJECT Spam #2
/(Zainab|San?ni) Abacha/
REJECT Nigeria spam
/MILITARY HEAD OF STATE IN NIGERIA/
REJECT Nigeria fraud spam
/antivirus\.5xx\.net/
REJECT Virus hoax (0190-dialer)
/MOSE CHUKWU/
REJECT Business fraud spam #1
/Ahmed Kabbah/
REJECT Business fraud spam #2
/Godwin Igbunu/
REJECT Business fraud spam #3
/I PRESUME THIS EMAIL WILL NOT BE A SURPRISE TO YOU/
REJECT Business fraud spam #4

/http:\/\/www\.al-opportunityqu\.com\/euro2/
REJECT Business fraud spam #5
/http:\/\/66.151.240.30\//
REJECT Spam of the worst kind
/http:\/\/members.tripod.com.br\/lev3iirkd/
REJECT Spam of the worst kind II

Messages containing the following patterns will be rejected; the envelope
sender will receive a bounce message pointing toward a hoax database.

Hoaxes
/jdbgmgr\.exe/

REJECT Virus hoax!
/ready to dictate a war/

REJECT Hoax: http://www.tu-berlin.de/www/software/hoax/unicwash.shtml
/inquiries@un\.org/

REJECT Hoax: http://www.tu-berlin.de/www/software/hoax/unicwash.shtml
/UNO is ready to receive signatures/

REJECT Hoax: http://www.tu-berlin.de/www/software/hoax/unicwash.shtml
/Third World War/

REJECT Hoax: http://www.tu-berlin.de/www/software/hoax/unicwash.shtml

Sometimes you might want to use body_checks as an immediate measure
to reject malicious messages if your mail virus scanner does not recognize the
virus yet. Remember to remove the pattern as soon as your scanner can deal
with the virus:

Virus
Win32.Netsky.V
/The processing of this message can take a few minutes\.\.\./
REJECT Win32.Netsky.V
/Converting message. Please wait\.\.\./
REJECT Win32.Netsky.V
/Please wait while loading failed message\.\.\./
REJECT Win32.Netsky.V
/Please wait while converting the message\.\.\./
REJECT Win32.Netsky.V

After you have your map file in place, add the body_checks parameter to
your main.cf file:

body_checks = regexp:/etc/postfix/body_checks

As before, you need to reload Postfix to activate the body checks.

Using Built-in Content Filters 127

HOW EXTERNAL CONTENT
FILTERS WORK

Be liberal in what you accept, and conservative in
what you send.
—Jon Postel, Internet pioneer (1943—-1998)

The built-in filters described in the pre-
vious chapters are meant to solve simple
problems; more sophisticated filtering has to
be delegated to external software.

You can make Postfix run content-inspection applications before or after
it queues messages. When mail is filtered before it is queued, Postfix can
leave the responsibility for notifying the sender with the client. When mail is
filtered after it is queued, responsibility is with Postfix.

This chapter outlines the process of delegation. You'll see how to
configure the Postfix daemon architecture to send messages to external
filtering mechanisms and how to let them reenter the Postfix system for final
delivery once they've been successfully filtered.

130

External content filters pick up where built-in header and body filters
leave off; not only do they allow external applications to inspect and reject
messages, but they also allow the applications to modify message content.
These are some typical tasks for filters:

¢ Adding disclaimers
e Scanning for viruses and worms
¢ Detecting spam
¢ Archiving mail
Postfix has two filter mechanisms named content_filter and smtpd_proxy_
filter that are similar in spirit, but differ in their capabilities and the way

they process content. Table 11-1 lists the differences between the two filter
types.

Table 11-1: Filter Differences

Filter Name Transports Rejection Behavior
content_filter smtp, lmtp, pipe Rejects after queuing
smtpd_proxy_filter smtp Rejects before queuing

This chapter explains these differences in detail and will help you decide
which filter type best fits your situation.

When Is the Best Moment to Filter Content?

Chapter 11

The RFC Internet standards say that a mail server must decide whether to
accept or reject a message no later than the DATA stage of the SMTP dialog.
Unfortunately, this leaves little time for a mail server to inspect the content
of a message, because mail clients implement a relatively short timeout to
protect against getting stuck communicating with a malfunctioning mail
server. For example, the Postfix SMTP client timeout is defined by the
smtp_data_done_timeout parameter, which is very tolerant and defaults to 600s.

If the mail server finishes looking at the content before the client runs into
the timeout, everything works fine, because the server can notify the client of
its decision about accepting the message. However, if the server is too slow,
the client goes away and tries again later, and chances are that the next
attempt will be just as unsuccessful.

The Postfix content_filter implementation avoids hiccups by processing
content inspection differently:

1. The mail client sends the content during the DATA stage.

2. The Postfix server accepts and queues the message. The client presumes
that transmission was successful.

3. The queue manager inspects the mail and schedules delivery according
to the content_filter entry.

4. Postfix hands the message to an external application.

5. The external application takes responsibility for delivering the
message. The external application could do any of the following
with the message:

* Accept the message and hand it back to Postfix for delivery.
* Accept the message and hand it to another application or server.

* Drop or bounce the message.

The second filter (smtpd_proxy filter) handles mail differently:

1. The mail client sends the content during the DATA stage.

2. The Postfix smtpd daemon proxies the SMTP commands and the content
to an external application.

3. The external application sends SMTP responses back to the Postfix smtpd
daemon, and smtpd then passes them on to the mail client.

This filter may have problems with mail client timeouts and does not
scale to many concurrent mail client connections. This is because the
smtpd_proxy_filter has no queue mechanism to schedule content filtering.
Without a queue mechanism, the external application needs to start work
immediately on each message that Postfix receives. As a result, you can have a
severe slowdown if the external application cannot get its work done as
quickly as messages come in. This is likely to be a problem with spam
detection or virus scanning applications, which often require time-
consuming unpacking and decoding of attachments.

Both approaches have disadvantages:

s content_filter generates extra traffic because Postfix initially accepts
messages before processing. This could result in a bounce later on, if the
filter application decides to reject the message.

e smtpd_proxy_filter rejects unwanted content early on, but it does not
scale well and may not be fast enough to get the job done.

Filters and Address Rewriting

When rewriting addresses in the mail header, you need to think about where
to apply filters. In particular, you need to decide whether to make Postfix

If you choose to rewrite addresses before filtering, you run the risk of
using internal addresses for bounces and warnings. For example, a warning
caused by a message to moe_helden@example.com might be bounced with an
address such as mh123@mailbox.example.com.

How External Content Fillers Work 131

132

Therefore, it is our view that you should make Postfix rewrite addresses
(by means of virtual_alias_maps or canonical_maps) afler reinjecting mail back
into the Postfix queue for final delivery. This allows an external application
(such as a virus scanner) to see the original recipients and generate appro-
priate warnings before Postfix rewrites the addresses.

There are two ways to disable address mapping (virtual alias expansion,
canonical mapping, address masquerading, and so on) before filtering. One
way is to set the following option in main.cf:

receive_override_options = no_address_mappings

You can also turn off address rewriting in master.cf just for the daemon
that accepts the mail from the network (which is usually smtpd):

smtp inet n - n - - smtpd
-0 content_filter=foo:[127.0.0.1]:54321
-0 receive_override_options=no_address_mappings

After the filter processes the message, the message is usually reinjected
into the Postfix queue. This is the right time to perform address manipu-
lation, and to do this, you will need an additional smtpd that accepts filtered
mail. Instead of using the receive_override_options=no_address_mappings setting,
this extra smtpd will use receive_override_options=no_unknown_recipient_checks.
You'll see more details about content_filter and smtpd_proxy filter in the
following sections.

content_filter: Queuing First, Filtering Later

CAUTION

Chapter 11

To configure a mailer with the content_filter mechanism, you normally
need two smtpd instances (see Figure 11-1). The first smtpd accepts unfiltered
messages and uses content_filter to delegate messages to the external
filtering application. The second smtpd instance listens for connections from
the external application so that messages can reenter the Postfix queue
system for further treatment.

Do not configure the second instance to run the content_filter application that the
first instance runs. This would create an infinite loop, where Postfix would send the
message lo the filtering application, and the message would come back into the Postfix
queue at the same place as before.

Muail server/
Mail client

smtpd
with

content_filter

smtpd
without
content_filter

cleanup

Filter

amgx

vuep Mailbox fep

Mail server Mail server

Figure 11-1: Delivery process using content_filter

How External Content Fillers Waork

133

134

NOTE

Chapter 11

Here’s how it works:

1. The smtpd configured with content_filter hands a message to the queue
manager.

2. The queue manager gives the message either to smtp, lmtp, or a pipe in
order to deliver it to the external filter application.

Figure 11-1 shows one of the possible three scenarios where qngr hands mail over to smtp.

3. The external filter application takes control of the message and pro-
cesses it.

4. If the filter program reinjects the message back into Postfix, it connects
to a Postfix smtpd configured to not use content_filter.

5. The second smtpd hands the message to the queue manager.

6. Postfix delivers the message locally or transports it to another mail server.

In addition to the message, Postfix can send extra information to the
external filter application to assist it. The exact information depends on the
daemon (1mtp, smtp, or pipe) that Postfix invokes to send the message to the
application.

Filter-Delegation Daemons

When using content_filter, you have three basic daemons at your disposal for
delegating mail to an external filter application. The daemons differ in what
they can do and transmit. Here is an overview:

pipe
The pipe daemon sends messages to scripts and other executable pro-
grams. They can trigger nearly any imaginable action, from archiving
messages to performing other kinds of automated work on the message
content, such as virus detection.

The open-ended range of tasks that these programs perform makes
it necessary to pass several arguments and flags to a filter program along
with the message. You can read about these arguments in the pipe(8)
manual page.

smtp

You can use the Postfix smtp daemon to transmit a message to a filter
application with SMTP or ESMTP (for example, to another MTA). The
information that you can send along with the message is limited by the
protocol; the smtp(8) manual page has more details.

Imtp
The Postfix Imtp daemon is also available to send messages to filter pro-
grams via the LMTP protocol. As with the SMTP client, the LMTP proto-
col limits the amount of extra information that you can transmit along
with the message, and you can read about it in the Imtp(8) manual page.

NOTE

Unlike the Postfix SMTP client, which currently does not implement Delivery Status
Notification (DSN) to generale separate notifications, the LMTP protocol allows a
server to send per-recipient status reports for a message (that is, reports on whether the
message has been rejected or accepled for each recipient). This makes it possible to avoid
confusing status notifications for multiple vecipients when the message goes through for
some recipients, but not for others.

The Basics of Configuring content_filter

To send messages to an external filter program using content_filter, you
need to modify the behavior of all of the daemons that handle incoming
mail. In particular, you need to do the following:

1. Define a transport as content_filter in your main.cf file.
2. Configure the transport in your master.cf file.

3. Configure an additional reinjection path in master.cf if you want to send
the message back to the Postfix queue after filtering.

Defining the Transport

To tell Postfix that it must hand over messages to an external application, use
the content_filter in your main.cf file. You must tell Postfix to transport all
messages to a (to-be-created) Postfix service that waits to hand over messages
to a filter application. For example, the following line tells Postfix to send
messages to a transport named foo, via port 54321 on localhost (127.0.0.1).
Remember that the square brackets prevent Postfix from looking up an MX
record for 127.0.0.1:

content_filter = foo:[127.0.0.1]:54321

Configuring the Transport

Next you need to configure the transport service that you just created in
main.cf. The transport service configuration file is master.cf, because it’s the
master daemon that needs to know about all of the services available. For a
new transport service, you need to give the master daemon the following
information:

The name of the service.

N

The name of the Postfix daemon program that will carry out the transport.

3. Options and other information that the program needs to do its job.

Here’s an example that builds on the foo transport:

#==== == = = = == == == = =
service type private unpriv chroot wakeup maxproc command
(yes) (yes) (yes) (never) (100)

How External Content Fillers Work 135

136

CAUTION

Chapter 11

foo unix - - n - 2
-0 smtp_data_done_timeout=1200s
-0 disable_dns_lookups=yes

smtp

The line that begins with foo is the essential transport configuration,
containing eight columns. The first column must match the transport name
that you defined in main.cf. The command column contains the command
that will send the message to the filter application (here, it’s the Postfix
SMTP client). The subsequent two lines are options to the command.

Command Option Syntax: When listing additional command parameters, add
whitespace to the beginning of every new line that contains the parameters, because a
line that starts with whitespace continues a logical line. However, you should trim
whitespace between parameters and values (such as between smtp_data_done_timeout
and 1200s); otherwise themaster daemon will not recognize your additions.

So far, so good—you can transmit messages to external applications.
However, if the application is to give the message back to Postfix, you need to
configure a reinjection path.

Configuring an Additional Reinjection Path

A reinjection path is simply a local Postfix injection method (such as SMTP,
LMTP, or local submission via sendmail) that doesn’t use content_filter. It’s
usually another instance of the smtpd daemon that runs with special options
to override global parameters set in the main.cf file. For example, if you
wanted an additional smtpd reinjection path daemon to listen on port 10025,
you could put the following in your master.cf file:

#==== == = = = == == == = =
service type private unpriv chroot wakeup maxproc command
(yes) (yes) (yes) (never) (100)

=== == = = = == == == = =
127.0.0.1:10025 inet n - n - - smtpd

-0 content_filter=

-0 receive override_options=no_unknown_recipient_checks
-0 smtpd_recipient_restrictions=permit_mynetworks,reject
-0 mynetworks=127.0.0.0/8

Notice that the transport type is inet this time, for an Internet transport
(the preceding example was a Unix domain socket transport type).

You can specify Internet services as host:port without defining the
transport in the main.cf file first (the host can be a hostname or an IP address
defined in /etc/hosts, whereas the port can be a number or the name of a
services defined in the /etc/services file).

You can omit host:, but this makes the service available on all network
interfaces as defined in inet_interfaces. In order to minimize your risk of
creating an open relay with your reinjection path, you should restrict the
listening network interfaces to just the ones you need, and in this case you
need only localhost/127.0.0.1.

There are additional command options:

e The explicitly empty content_filter setting disables the filter transport in
the main.cf file, so that you don’t run into an infinite loop of filtering.

e The receive_override_options setting disables recipient checking for
local_recipient_maps and relay recipient_maps—because these checks have
already been performed by the smtpd daemon that accepted the mail
from the Internet, there’s no need to perform them a second time.

¢ The final two parameters work together, first allowing mail only from the
mynetworks parameter, and then explicitly setting the mynetworks parame-
ter to 127.0.0.0/8. This is an additional safeguard against external hosts
trying to access your reinjection path as an open relay.

smtpd_proxy_filter: Filtering First, Queuing Later

NOTE

To use the smtpd_proxy_filter mechanism, you need to modify the existing
smtpd daemon (the before-filter smtpd) to proxy connections from mail clients
to the external filter program (see Figure 11-2).

The Postfix smtpd protects the external application by weeding out potentially nasty
stuff such as pipelining, long arguments, and odd characters that may come in from
the connection.

Depending on the filter application you use and its purpose, you may
also have to create a second smtpd instance (an after-filter smtpd) that listens
for messages sent back by the external filter application.

Here’s how it works:

1. The before-filter smtpd daemon connects to the external application.

2. The smtpd daemon proxies the incoming SMTP commands and data to
the external application.

3. The external filter application keeps the connection open as it processes
the message content.

4. If the filter application accepts the message, it can inject it into an after-
filter smtpd daemon or send it to another application.

How External Content Fillers Work 137

5. After deciding whether to accept or reject the message, the external fil-
ter application sends SMTP responses (such as 250 0K or 554 Reject) to
the before-filter smtpd.

6. The before-filter smtpd daemon proxies these responses to the originat-
ing mail client.

Mail server/
Mail client

Postfix

before-filter
smtpd

after-filter

cleanup sintpd

Mail server Mail server

Figure 11-2: Delivery process with a pass-through proxy

138 Chapter 11

Considerations for Proxy Filters
When working with smtpd_proxy filter, keep the following points in mind:

ESMTP communication
When sending a message into the filter, Postfix speaks ESMTP, but it
does not use command pipelining. The Postfix smtpd generates its own
EHLO, XFORWARD (for logging the remote client IP address instead of
localhost[127.0.0.1]), DATA, and QUIT commands. Otherwise, Postfix just
forwards unmodified copies of the MAIL FROM and RCPT TO commands that
the before-filter smtpd got from the remote mail client.

External application requirements

The filter (which must speak SMTP) should accept the same MAIL FROM
and RCPT TO command syntax as the Postfix smtpd.

Content reinjection
The filter application is expected to pass unmodified SMTP commands
from the before-filter smtpd to an after-filter Postfix smtpd (which usually
listens on a nonstandard port for reinjection on a path that is not subject
to the same filter; this is similar to the case of the content_filter mecha-
nism discussed earlier in this chapter).

Rejecting content
If the filter rejects content, it should send a negative SMTP response
(5xx code) back to the before-filter Postfix smtpd and then abort the con-
nection with the after-filter Postfix smtpd without completing the SMTP
conversation with the after-filter Postfix smtpd. Otherwise, the after-filter
smtpd may accidentally deliver a message.

The Basics of Configuring smipd_proxy_filter

To send messages to an external filter using smtpd_proxy filter, you need
to modify the behavior of the smtpd daemon. The following two steps are
necessary:

1. Modify the existing smtpd. At this point, we’ll refer to this daemon as

the before-filter smtpd.

2. Configure an additional smtpd instance to reinject mail back into the
Postfix queue; this is the after-filter smtpd.

Modifying the Existing smtpd (Before-Filter smtpd)

To make the existing smtpd proxy connections to a filter application, append
an smtpd_proxy filter parameter to the smtpd service in your master.cf file. You

must provide the IP address or FQDN and the port of the proxy.

How External Content Fillers Work]39

Here’s an example that uses port 10024 on localhost:

#==== == = = = == == == = =
service type private unpriv chroot wakeup maxproc command
(yes) (yes) (yes) (never) (100)

=== == = = = == == == = =
smtp inet n - n - 20 smtpd

-0 smtpd_proxy filter=localhost:10024

Configuring an Additional smtpd Reinjection Instance (After-Filter smtpd)

To create another instance of smtpd that accepts filtered messages on
localhost, you need to add another line to your master.cf file. This will be
similar to the default smtpd, but it will listen on a different port and should
not have the same proxy filter option as the before-filter smtpd. Here’s an
example for an after-filter smtpd that listens on port 10025:

f#==== == = = = == == == = =
service type private unpriv chroot wakeup maxproc command
(yes) (yes) (yes) (never) (100)

=== == = = = == == == = =
127.0.0.1:10025 inet n - n - - smtpd

-0 smtpd_authorized xforward hosts=127.0.0.0/8

-0 smtpd client restrictions=

-0 smtpd_helo restrictions=

-0 smtpd_sender_restrictions=

-0 smtpd_recipient_restrictions=permit_mynetworks,reject
-0 mynetworks=127.0.0.0/8

-0 receive_override_options=no_unknown_recipient_checks
-0 content_filter=

140 Chapter 11

USING EXTERNAL CONTENT
FILTERS

I know where lo get it, if you want it.
—/ailer #1 in Monty Python’s Life of Brian

N

-

Each tool has its purpose. Imagine you

»
try to develop a hammer that can also be
\‘ used for polishing. Most likely, you end up
with a bad hammer and a bad polisher. That’s
the reason Postfix does not do spam filtering, mail
archiving, or sanitizing mail. Instead it gives you the
opportunity to plug the best external filter that is available into the best MTA
that is available. In the previous chapters, you saw that Postfix offers slightly
different approaches for filtering mail that differ in when they process
incoming messages. This chapter addresses the practice of these approaches.
In particular, you will see how to append disclaimers to messages by

piping messages to a script and how to scan messages for viruses using either
content_filter or smtpd_proxy_filter to send them off to amavisd-new.

142

Appending Disclaimers to Messages with a Script

Chapter 12

Among the countless things that you can do with a content_filter script is add
a disclaimer to all outgoing messages. The following example uses alterMIME,
a small program that is used to alter mime-encoded mail, in a script to add a
disclaimer to every message that is sent from internal clients. Figure 12-1 shows
you how alterMIME will be integrated into the message transport process.

Internal
smtpd

alterMIME

Figure 12-1: AlterMIME integration into Postfix

To add disclaimers to outbound messages without touching inbound
and local messages, you need to separate the traffic for each direction. Let’s
say that your mail server has separate network interfaces for your internal
and external networks. This means you need to create three separate
instances of smtpd and bind them to the localhost, internal, and external
network interfaces. The following example shows you how a message
transport from your internal network to a remote destination would be
processed if you created separate instances of smtpd for separate network
interfaces.

1. When a message leaves your network, a mail client connects to the smtpd
instance listening on the internal interface.

2. This internal smtpd accepts the message and sends it to gmgr.

3. gmgr sends the message to the content_filter service.

4. The content_filter service uses the pipe daemon to feed the message to
the script.

5. The script adds a disclaimer.

6. The script reinjects the message to the smtpd instance listening on the
local network interface.
The local smtpd sends the reinjected message to qmgr.

gmgr sends the message to smtp and out to the Internet.

Before you configure the transport, however, you must create the script
that will invoke alterMIME from Postfix.

Installing alterMIME and Creating the Filter Script

The script will run alterMIME (http://www.pldaniels.com/altermime) to modify
the outgoing message. If you don’t have alterMIME (and you don’t have a
binary package for your operating system), download it, unpack it, change
into your source directory, and run make and make install. This should leave
you with an alterMIME executable in /usr/local/bin/altermime.

Creating the alterMIME Environment

You should run alterMIME as an unprivileged system user. For example, if
you would like to use the filter username on your machine, you could run
these commands to create the user:

groupadd filter
useradd -d /var/spool/altermime -G filter altermime

Creating a Script Directory

It’s not a very good idea to clutter up your /etc/postfix directory with a
bunch of scripts. Create a separate subdirectory as the superuser to store
your scripts, and make the subdirectory accessible to filter and root only.

For example, the following command sequence creates a directory with
the correct permissions and ownership:

mkdir /etc/postfix/filter

chown root /etc/postfix/filter
chgrp filter /etc/postfix/filter
chmod 770 /etc/postfix/filter

Using External Content Filters 143

144

Chapter 12

Creating the Script

The following script, named /etc/postfix/filter/add_disclaimer.sh, invokes
alterMIME on an incoming message from Postfix (sent from the pipe
daemon). The alterMIME program adds a disclaimer to the message and
reinjects it back into the Postfix queue. AlterMIME requires a location to
write a temporary file; it cannot operate on stdin.

#1/bin/sh

System dependent settings

ALTERMIME=/usr/local/bin/altermime

ALTERMIME_DIR=/var/spool/altermime

SENDMAIL=/usr/sbin/sendmail

Exit codes of commands invoked by Postfix are expected

to follow the conventions defined in <sysexits.h>.

TEMPFAIL=75

UNAVAILABLE=69

Change in to alterMIME's working directory and

notify Postfix if 'cd' fails.

cd $ALTERMIME DIR || { echo $ALTERMIME DIR does not exist; exit $TEMPFAIL; }

Clean up when done or when aborting.

trap "rm -f in.$$" 012 3 15

Write mail to a temporary file

Notify Postfix if this fails

cat >in.$$ || { echo Cannot write to $ALTERMIME_DIR; exit $TEMPFAIL; }

Call alterMIME, hand over the message and

tell alterMIME what to do with it

$ALTERMIME --input=in.$$ \
--disclaimer=/etc/postfix/disclaimer.txt \
--disclaimer-html=/etc/postfix/disclaimer.txt \
--xheader="X-Copyrighted-Material: Please visit http:// \
wwi.example.com/message_disclaimer.html" || \
{ echo Message content rejected; exit $UNAVAILABLE; }

Call sendmail to reinject the message into Postfix

$SENDMAIL "$@" <in.$$

Use sendmail's EXIT STATUS to tell Postfix

how things went.

exit $?

After creating the script, give write access only to root, but give execute
permission to the filter user:

chown root add disclaimer.sh
chgrp filter add_disclaimer.sh
chmod 750 add_disclaimer.sh

Of course, now you need to create the disclaimer referenced in the
script.

Creating the Disclaimer

If you already have a disclaimer, put the text in /etc/postfix/filter/
disclaimer.txt. If you're still looking for the right disclaimer, you may want to
visit emaildisclaimers.com (http://www.emaildisclaimers.com), a site dedicated
to disclaimers and related email law. This example just uses the following
dummy text (from http://www.lipsum.com):

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Nam commodo
lobortis magna. Quisque neque. Etiam aliquam. Nulla tempor vestibulum.

With the text in place, permit only the filter group to read your disclaimer:

chgrp filter disclaimer.txt
chmod 640 disclaimer.txt

This wraps up the filter script. Now you have to configure Postfix to use
the script.

Configuring Postfix for the Disclaimer Script

Configuring Postfix to invoke the script is a two-step process:

1. Define a content_filter parameter for the proper smtpd in the
master.cf file.

2. Define the transport in the master.cf file.

Defining the content_filter Parameter

As explained in Chapter 11, you would now add the content_filter parameter
to main.cf and specify a transport name. However, this would globally specify
a content_filter, and the filter would apply to all processes that handle
incoming mail. You don’t want that to happen in this particular example,
though, because you want to apply the filter only to messages that come from
the internal network interface.

To assign the filter to messages coming from the internal network
interface only, you will add the content_filter only to the single smtpd instance
in the master.cf file. The address of the internal interface in the following
example of master.cf is 172.16.0.1:

127.0.0.1:smtp inet n - n - - smtpd @

172.16.0.1:smtp inet n . n - - smtpd @
-0 content_filter=disclaimer:

192.0.34.166:smtp inet n - n - - smtpd ©

® This is the local smtpd instance.

® This is the smtpd instance that listens on the internal network interface.

© This is the smtpd instance that listens to the external network.

Notice that the name of the filter transport is disclaimer; this is not the
script name. You'll define this transport in the next section.

Using External Content Filters]45

Defining the Transport

You now need to define the disclaimer transport in the master.cf file. Create
an instance of the pipe transport that runs the add_disclaimer.sh script. Here’s
how you would do it with the script shown earlier in this chapter:

disclaimer unix

- n n - - pipe

flags=Rq user=filter argv=/etc/postfix/filter/add_disclaimer.sh -f ${sender} -- ${recipient}

146

NOTE

Chapter 12

This definition runs the pipe daemon as the filter user, calling
add_disclaimer.sh when fed a message. It also passes the envelope sender
and envelope recipient to the script. The R flag prepends a Return-Path
message header with the envelope sender address, and the q flag quotes
whitespace and other special characters in the command-line $sender and
$recipient arguments.

The pipe(8) manual page contains a full list of flags and options.

Testing the Filter

To test the filter, you will need to perform the following steps, which are
discussed in the following sections:

1. Send mail to a remote user through the internal network interface.
2. Check the mail log for filter actions.

3. Check the sent message for a disclaimer.

Sending Mail to a Remote User

To generate a message for Postfix to send to the filter, use telnet to connect
to the internal network interface (where the smtpd instance should use the
filter). Here’s an example session:

$ telnet 172.16.0.1 25

Trying 172.16.0.1...

Connected to 172.16.0.1.

Escape character is '*]'.

220 mail.example.com ESMTP Postfix

HELO client.example.com

250 mail.example.com

MAIL FROM: <sender@example.com>

250 Ok

RCPT TO: <recipient@remote-example.com>
250 Ok

DATA

354 End data with <CR><LF>.<CR><LF>
FROM: Sender <sender@example.com>

T0: Recipient <recipient@remote-example.com>

Subject: Testing disclaimer

This is a test. There should be text at the bottom of this message
added by a disclaimer script.

250 Ok: queued as 3C4D043F2F

QUIT

221 Bye

Checking the Mail Log

The mail log should contain evidence of filter action, as in this example:

Mar 12 01:59:53 mail postfix/smtpd[30206]: connect from client.example.com[172.16.0.2]

Mar 12 02:00:21 mail postfix/smtpd[30206]: 3C4D043F2F: client=client.example.com[172.16.0.2]

Mar 12 02:01:53 mail postfix/cleanup[30209]: 3C4D043F2F:
message-id=<20040312010021.3C4D043F2F@mail.example.com>

Mar 12 02:01:53 mail postfix/ngmgr[30193]: 3C4D043F2F: from=<¢sender@example.com>, size=444,
nrcpt=1 (queue active)

Mar 12 02:01:53 mail postfix/pipe[30213]: 3C4D043F2F: to=<recipient@remote-example.com>,
relay=disclaimer, delay=92, status=sent (mail.example.com) @

Mar 12 02:01:53 mail postfix/pickup[30192]: 8421143F2F: uid=100 from=<sender@example.com> @

Mar 12 02:01:53 mail postfix/cleanup[30209]: 8421143F2F:
message-id=<20040312010021.3C4D043F2F@mail .example.com>

Mar 12 02:01:53 mail postfix/nqmgr[30193]: 8421143F2F: from=<sender@example.com>, size=977,
nrcpt=1 (queue active)

Mar 12 02:01:55 mail postfix/smtpd[30206]: disconnect from client.example.com[172.16.0.2]

Mar 12 02:02:03 mail postfix/smtp[30220]: 8421143F2F: to=<recipient@remote-example.com>,
relay=mail.remote-example.com[212.14.92.89], delay=10, status=sent (250 Ok: queued as
56851E1C65) ©

® The pipe daemon uses the disclaimer transport to send the message to

the script.
® The script reinjects the message with the original envelope sender.
® The smtp daemon successfully delivers the message to the envelope
recipient.

Checking the Message for a Disclaimer

As a final (and somewhat obvious) test, retrieve the message and see if it

contains the X-header and the disclaimer that alterMIME is supposed to add

on outgoing messages. You can see both in the following example:

Return-Path: <sender@example.com>
X-Original-To: recipient@remote-example.com
Delivered-To: recipient@remote-example.com
Received: from mail.example.com (mail.example.com [192.0.34.166])
by mail.remote-example.com (Postfix) with ESMTP id 56851E1C65
for <recipient@remote-example.com>; Fri, 12 Mar 2004 02:01:25 +0100 (CET)

Using External Content Filters

147

148

Received: by mail.example.com (Postfix, from userid 100)
id 8421143F2F; Fri, 12 Mar 2004 02:01:53 +0100 (CET)

Received: from client.example.com (client.example.com [172.16.0.2])by
mail.example.com+(Postfix) with SMTP id 3C4Do43F2Ffor
<recipient@remote-example.com>; Fri, 12 Mar 2004+02:00:21 +0100 (CET)

From: Sender <sender@example.com>

To: Recipient <recipient@remote-example.com>

Subject: Testing disclaimer

Message-Id: <20040312010021.3C4D043F2F@mail.example.com>

Date: Fri, 12 Mar 2004 02:00:21 +0100 (CET)

X-Copyrighted-Material: Please visit http://www.example.com/
message_disclaimer.html

This is a test. There should be text at the bottom of this message
added by a disclaimer script.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Nam commodo
lobortis magna. Quisque neque. Etiam aliquam. Nulla tempor vestibulum.

Scanning for Viruses with content_filter and amavisd-new

NOTE

Chapter 12

This section describes an advanced use of content_filter described in
Chapter 11—how to integrate the popular program amavisd-new into
Postfix. amavisd-new links an MTA and one or more virus scanners or spam-
detection programs, such as SpamAssassin. It is actively developed and is
recommended by many postmasters on the Postfix mailing list.

To get virus-scanning functionality, you need to have at least one supported virus
scanner installed in addition to amavisd-new; check the documentation for a survey of
the supported products.

Figure 12-2 illustrates how Postfix and amavisd-new work together with
other applications such as spam detectors and virus scanners. Here’s the
message flow:

1. A mail client sends a message to Postfix.
2. smtpd accepts the message.
3

smtpd sends the message to qmgr.

-

gmgr sends the message to amavisd-new.

ot

amavisd-new sends the message to other applications (virus scanners in
this example).
amavisd-new reinjects the message into the local smtpd.

The local smtpd sends the message to qmgr.

® N o

gngr either bounces or delivers the message.

nP

local smtpd
without
content_filter

smtpd with
content_filter

amavisd-new

Y

Antispam

'

Virus Virus
scanner 1 scanner 2

Y

Figure 12-2: amavisd-new integration with Postfix using content_filter

Installing amavisd-new

To get amavisd-new, download it from one of the mirrors mentioned on the
amavisd-new website (http://www.ijs.si/software/amavisd). After unpacking
the archive, follow the steps in the INSTALL file to install amavisd-new for
Postfix.

You should also read the README.postfix (http://www.ijs.si/software/
amavisd/README . postfix) file for up-to-date instructions and notes specific to
Postfix.

You need to build only the daemon version of amavisd-new. The helper applications,
such as amavis(.c) and amavisd-milter(.c), are not necessary for use with Postfix.

Installing Perl Modules for amavisd-new from CPAN

amavisd-new needs a number of Perl modules to work correctly, and the
INSTALL document in amavisd-new’s SOURCE directory contains a full list of
these modules. When installing the modules, you usually have the choice
between choosing a package provided by the makers of your distribution or
directly downloading the modules from CPAN (the Comprehensive Perl
Archive Network, at http://www.cpan.org).

Using External Content Fillers 149

150

NOTE

Chapter 12

CPAN is generally the best source for the most recent modules, but you may want to
choose your operating system’s packages for consistency instead.

To install modules such as Compress: :Z1ib from CPAN, you need to run
Perl with the CPAN module as follows:

perl -MCPAN -e shell;
cpan shell -- CPAN exploration and modules installation (v1.76)
ReadlLine support enabled
cpan> install Compress::Zlib
Running install for module Compress::Zlib
Running make for P/PM/PMQS/Compress-Zlib-1.33.tar.gz
Fetching with LWP:
ftp://ftp-stud.fht-esslingen.de/pub/Mirrors/CPAN/authoxs/id/P/PM/PMQS/
Compress-Z1lib-1.33.tar.gz
CPAN: Digest::MD5 loaded ok
Fetching with LWP:
ftp://ftp-stud.fht-esslingen.de/pub/Mirrors/CPAN/authors/id/P/PM/PMQS/
CHECKSUMS
Checksum for /root/.cpan/sources/authors/id/P/PM/PMQS/Compress-Z1ib-
1.33.tar.gz ok
Scanning cache /root/.cpan/build for sizes
Compress-Z1lib-1.33/
. lots of building output ...
All tests successful, 1 test skipped.
Files=6, Tests=287, 2 wallclock secs (0.73 cusr + 0.11 csys = 0.84 CPU)
/usr/bin/make test -- OK
Running make install
Installing /usr/lib/perls/site_perl/5.6.0/1386-1inux/auto/Compress/Z1ib/
Z1ib.so
Files found in blib/arch: installing files in blib/lib into architecture
dependent library tree
Installing /usr/lib/perls/site_perl/5.6.0/i386-1inux/Compress/Z1ib.pm
Installing /usxr/man/man3/Compress::Zlib.3pm
Writing /usr/lib/perls/site_perl/5.6.0/1386-1inux/auto/Compress/Z1ib/.packlist
Appending installation info to /usr/lib/perls/site_perl/5.6.0/i386-1inux/
perllocal.pod
{usr/bin/make install -- OK

After getting the modules in place and installing amavisd-new, you
should test it.

Testing amavisd-new

To test amavisd-new in isolation, before attempting to get it interoperating
with Postfix, perform the following steps:

1. Start amavisd-new in debug mode to see if it starts up properly.

2. Perform a network test to see if it listens on a network port.

su - vscan
$ /usxr/local/sbin/amavisd debug

Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan

28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28

11:
11:
11:
11:
11:
11:
11:
11:
11:
11:
11:
11:
11:
11:
11:
11:
11:
11:
11:
11:

10:
10:
10:
10:
10:
10:
10:
143
10:
10:
10:
10:
10:
10:
10:
10:
10:
10:
10:
10:

10

43
43
43
43
43
43
43

43
43
43
43
43
43
43
43
43
43
43
43

Running amavisd-new in Debug Mode

Invoking amavisd-new in debug mode gives you the answers to the following
questions at once:

¢ Does it run? All mandatory Perl modules need to be installed for
amavisd-new to start up. If a module is missing, you will get an error
message that indicates the missing module.

¢ Can you run it as an unprivileged user? amavisd-new requires a new
group (vscan by default) and a user account in this group (also vscan
by default).

¢ Does it find optional Perl modules that implement additional functional-
ity, such as SpamAssassin, LDAP, and SQL.?

e Does it use the proper installation of Perl? If you have more than one
version of Perl installed, you may not have all of the modules installed
for the particular version of Perl that you're trying to use.

¢ Does it find auxiliary programs, such as virus scanners?

¢ Which configuration file is it using? Normally, it’s /etc/amavisd.conf, but
you can override this if you know exactly what you're doing.

¢ Can it bind to the ports specified in the configuration file?

For your first attempt, it’s best to start amavisd-new interactively, keeping
it attached to the terminal. To do this, switch to the user vscan and run
amavisd-new with the debug option. This example session shows the output
that you're looking for:

mail amavisd[29188]: starting. amavisd at mail amavisd-new-20030616-p6
mail amavisd[29188]: Perl version 5.006 @
mail amavisd[29188]: Module Amavis::Conf 1.15
mail amavisd[29188]: Module Archive::Tar 1.08
mail amavisd[29188]: Module Archive::Zip 1.09
mail amavisd[29188]: Module Compress::Z1lib 1.33
mail amavisd[29188]: Module Convert::TNEF 0.17
mail amavisd[29188]: Module Convert::UUlib 1.0
mail amavisd[29188]: Module MIME::Entity 5.404
mail amavisd[29188]: Module MIME::Parser 5.406
mail amavisd[29188]: Module MIME::Tools 5.411
mail amavisd[29188]: Module Mail::Header 1.60
mail amavisd[29188]: Module Mail::Internet 1.60
mail amavisd[29188]: Module Mail::SpamAssassin 2.63
mail amavisd[29188]: Module Net::Cmd 2.24
mail amavisd[29188]: Module Net::DNS 0.40
mail amavisd[29188]: Module Net::SMTP 2.26
mail amavisd[29188]: Module Net::Server 0.86
mail amavisd[29188]: Module Time::HiRes 1.55
mail amavisd[29188]: Module Unix::Syslog 0.99

Using External Content Filters]5]

Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan

Net::

Jan

Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan

28
28
28
28
28
28
28
28

28

28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28
28

11:
11:
11:
11:
11:
11:
11:
11:

10:43
10:43
10:43
10:43
10:43
10:43
10:43
10:43

mail
mail
mail
mail
mail
mail
mail
mail

amavisd[29188]:
amavisd[29188]:
amavisd[29188]:
amavisd[29188]:
amavisd[29188]:

]: ANTI-VIRUS code loaded

]

amavisd[29188

amavisd[29188]:
amavisd[29188]:

Found myself: /usr/sbin/amavisd -c /etc/amavisd.conf
Lookup: :SOL code NOT loaded ©

Lookup: : LDAP code NOT loaded

AMCL-in protocol code loaded

SMTP-in protocol code loaded

ANTI-SPAM code loaded ©
Net::Server: 2004/01/28-11:10:43 Amavis (type \

Server::PreForkSimple) starting! pid(29188)
11:10:43 mail amavisd[29188]: Net::Server: Binding to UNIX socket file \
/var/amavis/amavisd.sock using SOCK_STREAM

11:
11:
11:
11:
11:
11:
11:
11:
11:
11:
11:
11:
11:
11:
11:
11:
11:

10:43
10:43
10:43
10:43
10:43
10:43
10:43
10:43
10:43
10:43
10:43
10:43
10:43
10:43
10:43
10:43
10:43

Pro (AVP)
Jan 28 11:10:43
Jan 28 11:10:43 mail
CentralCommand Vexira Antivirus

Jan 28 11:10:43 mail amavisd[29188]:
Jan 28 11:10:43 mail amavisd[29188]:

mail
mail
mail
mail
mail
mail
mail
mail
mail
mail
mail
mail
mail
mail
mail
mail
mail

mail

amavisd[29188]:
: Net::Server: Setting gid to "54322 54322"

: Net::Server: Setting uid to "7509"

: Net::Server: Setting up serialization via flock

amavisd[29188
amavisd[29188
amavisd[29188

]
]
]
amavisd[29188]:
amavisd[29188]:
amavisd[29188]:
amavisd[29188]:
amavisd[29188]:
amavisd[29188]:
amavisd[29188]:
amavisd[29188]:
amavisd[29188]:
amavisd[29188]:
amavisd[29188]:
amavisd[29188]:
]

amavisd[29188

amavisd[29188]:
amavisd[29188]:

Symantec CommandLineScanner

Jan 28 11:10:43 mail amavisd[29188]:
Jan 28 11:10:43 mail amavisd[29188]:

Linux/FreeBSD/Solaris

Jan
Jan
Jan
Jan
Jan
Jan

28
28
28
28
28
28

11:
11:
11:
11:
11:
11:

10:43
10:43
10:43
10:43
10:43
10:43

Client/Server
Jan 28 11:10:43
Jan 28 11:10:43

152

Chapter 12

mail
mail
mail
mail
mail
mail

amavisd[29188
amavisd[29188

amavisd[29188
amavisd[29188
amavisd[29188

Version

mail
mail

amavisd[29188]:
amavisd[29188]:

Net::Server: Binding to TCP port 10024 on host 127.0.0.1

Found $file at /usr/bin/file

Found $arc at /usr/bin/arc

Found $gzip at /usr/bin/gzip

Found $bzip2 at /usr/bin/bzip2
Found $1zop at /usr/local/bin/lzop
Found $1lha at /usr/bin/lha

Found $unarj at /usr/bin/unarj

Found $uncompress at /usr/bin/uncompress
Found $unfreeze at /usr/local/bin/unfreeze

Found $unrar at /usr/bin/rar
Found $zoo at /usr/bin/zoo
Found $cpio at /bin/cpio @

: No primary av scanner: Kasperskylab AntiViral Toolkit \

No primary av scanner: Kasperskylab AVPDaemonClient
No primary av scanner: H+BEDV AntiVir or \

No primary av scanner: Command AntiVirus for Linux
No primary av scanner: Symantec CarrierScan via \

No primary av scanner: Symantec AntiVirus Scan Engine
No primary av scanner: Dr.Web Antivirus for \

]: No primary av scanner: F-Secure Antivirus
]: No primary av scanner: CAI InoculatelT
amavisd[29188]:
]
]
]

No primary av scanner: MkS Vir for Linux (beta)

: No primary av scanner: MkS_Vir daemon
: No primary av scanner: ESET Software NOD32
: No primary av scanner: ESET Software NOD32 - \

No primary av scanner: Norman Virus Control v5 / Linux
No primary av scanner: Panda Antivirus for Linux

Jan 28 11:10:43 mail amavisd[29188]:
at /usr/local/bin/uvscan ©

Jan
Jan
Jan
Jan
Jan
Jan
Jan
Jan

28
28
28
28
28
28
28
28

11:
11:
11:
11:
11:
11:
11:
11:

10

10:
10:
10:
10:
10:
10:
10:

143
43
43
43
43
43
43
43

mail
mail
mail
mail
mail
mail
mail
mail

amavisd[29188]
amavisd[29188]
amavisd[29188]
amavisd[29188]
amavisd[29188]:
amavisd[29188]
amavisd[29188]
amavisd[29188]:

Found primary

: No primary av
: No primary av
: No primary av
: No primary av

av scanner NAI McAfee AntiVirus (uvscan) \

scanner

scanner:

scanner

scanner:

: VirusBuster

CyberSoft VFind

: Ikarus AntiVirus for Linux
BitDefender

No secondary av scanner: Clam Antivirus - clamscan

: No secondary av scanner: FRISK F-Prot Antivirus
: No secondary av scanner: Trend Micro FileScanner

SpamControl: initializing Mail::SpamAssassin @

® This line indicates the Perl version.
® This line and the following one indicate that no SQL or LDAP code is
present.

© This line indicates that the antispam code was loaded; this only

succeeds when SpamAssassin or dspam are present.

O This line and the preceding lines indicate that various external
unpackers have been found—thus enabling amavisd-new to unpack
attachments compressed with these packers.

© This line indicates that McAfee AntiVirus is present.

@ At this point, amavisd-new is ready.

Testing Network Connectivity

With the stand-alone amavisd-new still running, you should now see if it

accepts connections. Use telnet sessions to test both of the ESMTP and

LMTP alternatives.

Testing ESMTP Availability

Open a telnet connection to the local port 10024 (the default for amavisd-
new). You should check that it is listening on the port and responds to

ESMTP commands. amavisd-new should respond to an EHLO command with a

set of available commands, as in the following sample session:

telnet localhost 10024
220 [127.0.0.1] ESMTP amavisd-new service ready
EHLO mail.example.com

250-
250-
250-

[127.0.0.1]
PIPELINING
SIZE

250-8BITMIME
250 ENHANCEDSTATUSCODES

QUIT

221 2.0.0 [127.0.0.1] (amavisd) closing transmission channel

Using External Content Filters

153

154

Chapter 12

Testing LMTP Availability

Next you need to check that amavisd-new is listening on local port 10024
(the amavisd-new default for LMTP) and responds to LMTP commands. You
should be able to run an LHLO command, as in this session:

telnet localhost 10024

220 [127.0.0.1] ESMTP amavisd-new service ready

LHLO mail.example.com

250-[127.0.0.1]

250-PIPELINING

250-SIZE

250-8BITMIME

250 ENHANCEDSTATUSCODES

QuIT

221 2.0.0 [127.0.0.1] (amavisd) closing transmission channel

Optimizing amavisd-new Performance

If you get a lot of mail, you might want to tweak the performance of amavisd-
new. Because it makes heavy use of the filesystem to prepare messages for
further inspection, amavisd-new’s performance can be bound to the speed
and latency of disk I/O. You can significantly optimize the read-write
operation speed by moving this preparation to a RAM disk style of filesystem.
The procedure described in the following sections uses the Linux temporary
filesystem type (tmpfs).

Is This Safe?

You can rest assured that you won’t lose any email during the filtering
process due to the way that you integrate amavisd-new into Postfix. Take a
look at what happens during filtering:

1. Upon receiving a new message, the Postfix queue manager sends a mail
delivery request to a Postfix SMTP or LMTP client; the client transports
the message to amavisd-new.

2. amavisd-new starts working on the message (doing scanning, spam
checking, and so on), but it does not immediately acknowledge that it
received the message.

3. While waiting for amavisd-new, Postfix keeps the message in its queue,
waiting for amavisd-new to tell it that it received the message properly.

4. After amavisd-new finishes its work, it reinjects the message back into the
Postfix queue.

[

The Postfix smtpd that handles the reinjection accepts the message from
amavisd-new.

NOTE

6. Upon getting the acknowledgement from the reinjecting smtpd, amavisd-
new acknowledges successful transport back to the originating Postfix
Imtp or smtp client, which in turn reports back to the queue manager that
the message is delivered.

As you can see, amavisd-new only tells the prefilter Postfix component
that it got the message after the postfilter smtpd accepts the processed
message. This way, you can never lose mail in amavisd-new.

Sizing tmpfs

To calculate the correct size for tmpfs, consider this: If you run n amavisd-
new instances, and each one accepts messages of at most message_size_limit,
you need this much space:

n * (1 + maximum_expected_expansionfactor) * message_size_limit * 7/8

The expansionfactor is tricky, but a factor of 2 is quite okay (a compressed
message—think *.zip or *.rar files here—may grow to twice the original size).

For example, if you have five amavisd-new instances and a 10MB message
limit, you would get the following result for the size of tmpfs:

5% (14 2) * 10MB * 7/8 = 131.25MB

Make sure that you have enough physical memory to hold the tmpfs; otherwise, your
machine will start swapping memory out to disk, and you will end wp with perfor-
mance that’s worse than a regular filesystem.

Configuring the Optimization

There are a few steps involved in setting up amavisd-new to use tmpfs:

Find amavisd-new’s $TEMPBASE parameter.
Create a tmpfs filesystem.

Stop amavisd-new.

Ll

Mount the tmpfs filesystem.
5. Start amavisd-new.

6. Make sure that amavisd-new still works.

First, you need to find out where the amavisd-new $TEMPBASE is defined.
This is the mount point for the tmpfs that you will create. The default
$TEMPBASE is $MYHOME, which is /var/amavis by default. To find out for sure, use
grep on your configuration file. This example shows that it is set to $MYHOME:

grep TEMPBASE /etc/amavisd.conf

$TEMPBASE = $MYHOME; # (must be set if other config vars use is)

$ENV{TMPDIR} = $TEMPBASE; # wise, but usually not necessary
"-f=$TEMPBASE {}", [0,8], [3,4,5,6], qr/infected: (["“\r\n]+)/],

Using External Content Filters 155

156

Chapter 12

adjusting /var/amavis above to match your $TEMPBASE.
directory $TEMPBASE specifies) in the 'Names=' section.

Run another grep to find out what $MYHOME is. In the following example,
you can see that the definition of $MYHOME is commented out, so it uses the
default value:

grep MYHOME /etc/amavisd.conf

$MYHOME serves as a quick default for some other configuration settings.
$MYHOME is not used directly by the program. No trailing slash!
H#$MYHOME = '/var/lib/amavis'; # (default is '/var/amavis')

$TEMPBASE = $MYHOME; # (must be set if other config vars use is)
H#$TEMPBASE = "$MYHOME/tmp"; # prefer to keep home dir /var/amavis clean?
#$helpers_home = $MYHOME; # (defaults to $MYHOME)

#$daemon_chroot_dir = $MYHOME; # (default is undef, meaning: do not chroot)

#%pid_file = "$MYHOME/amavisd.pid"; # (default is "$MYHOME/amavisd.pid")

#$lock file = "$MYHOME/amavisd.lock"; # (default is "$MYHOME/amavisd.lock")

#$forward method = "bsmtp:$MYHOME/out-%i-%n.bsmtp";

$unix_socketname = "$MYHOME/amavisd.sock"; # amavis helper protocol socket
(usual setting is $MYHOME/amavisd.sock)

$LOGFILE = "$MYHOME/amavis.log"; # (defaults to empty, no log)

"{} -ss -i "*' -log=$MYHOME/vbuster.log", [0], [1],

Now you need to create a tmpfs entry in your /etc/fstab file, using the
filesystem size calculated in the previous section (“Sizing tmpfs”). The
following example uses a 150MB size and limits access to a particular user
and group. In this case the user ID is 7509 and the GID is 54322, which match
the user and group vscan in the /etc/passwd and /etc/group files; keep in mind
that your system almost certainly has different numbers, and you will need to
look them up by yourself:

/dev/shm /var/amavis tmpfs defaults,size=150m,mode=700,uid=7509,gid=54322 0 0

Before you mount /var/amavis, make sure to stop amavisd-new with a
command such as this:

/etc/init.d/amavisd-new stop

Next, mount /var/amavis (remember that this is the tmpfs filesystem that
you just defined in /etc/fstab):

mount /var/amavis
Now start amavisd-new again:

/fetc/init.d/amavisd-new start

Check whether all is well by looking at the logs and examining df -h
output. In the following example, /var/amavis is 100MB, and only 76KB are
currently in use:

df -h /var/amavis
Filesystem Size Used Avail Use% Mounted on
/dev/shm 100M 76k 99M 1% /var/amavis

Sometimes amavisd-new leaves stale files in its $TEMPBASE directory. To prevent
$TEMPBASE from getting filled with these files, you can stop amavisd-new daily,
remove the stale files, and restart. A daily cron job seript such as the following will
get the job done:

#1/bin/bash
/etc/init.d/amavisd stop

rm -Rf /var/amavis/amavis-200%*
/etc/init.d/amavisd start

Configuring Postfix to Use amavisd-new

At this point, Postfix and amavisd-new should each run independently of
the other. Therefore, you need to configure Postfix to send messages to
amavisd-new and create another smtpd instance for message reinjection.
The following steps (discussed in the following sections) will integrate
amavisd-new into Postfix:

1. Create a transport.
2. Configure the transport.

3. Configure a reinjection path.

Because the fillered mail needs a way of getting back into the Postfix queue system with-
out being scanned again, you need a dedicaled smtpd that doesn’l use content_filter.
This allows amavisd-new to reinject the mail into the system without generating loops.
Port 25 is already taken, so you can make a copy of smtpd listen to a nonstandard port.
This example uses port 10025 on localhost.

amavisd-new also needs a port to listen on. The default of port 10024 on
localhost is fine.

Creating a Transport Using content_filter in main.cf

The first step in delegating the content processing to an external program is
to define the transport that sends messages to the filtering program. Postfix
uses the content_filter parameter in the main.cf file. The parameter expects a
notation of transportname:nexthop:port.

Using External Content Filters 157

In the example we're working on, amavisd-new is running on the
same machine as Postfix, so you can access it at port 10024 on localhost
(127.0.0.1). You need to define the following content_filter parameter in
the main.cf file to make Postfix connect to amavisd-new:

content_filter = amavisd-new:[127.0.0.1]:10024

Running amavisd-new on a Different Host

If you feel that the filtering load is too much for a single machine, you
can run amavisd-new on one or more machines. The nexthop part of
transportname:nexthop:port allows you to easily specify a different host for
the filter. Consider vscanners.example.com in the following example:

content_filter = amavisd-new:vscanners.example.com:10024

The name vscanners.example.com could be any one of the following:

¢ One machine (through one A record)
¢ Multiple machines (through multiple round-robin A records)

¢ Multiple machines (one or more machines with different priority MX
records)

Defining the Transport in master.cf

Next you need to define the daemon that will connect to amavisd-new and
specify the environment for the daemon. Remember that the daemon can be
smtp, Intp, or pipe. You saw an example of pipe earlier in this chapter; it’s time
to look at the other two.

Defining an ESMTP Transport

If you want to use the ESMTP protocol to send messages to amavisd-new, add
the following entries to your master.cf file:

#==== == = = = == == == = = ====
service type private unpriv chroot wakeup maxproc command
(yes) (yes) (yes) (never) (100)

mus - = = = - - - = = —_—
amavisd-new unix - - n - 2 smtp

-0 smtp_data_done_timeout=1200s
-0 disable_dns_lookups=yes
There are a few things to note in the preceding entries:

¢ The special transport amavisd-new is a copy of the normal smtp transport.
Its name must match the transport name that you gave to the
content_filter parameter that you defined in main.cf.

158 Chapter 12

¢ amavisd-new is quite resource-hungry. Unless you have a fast machine,
you might want to leave the maximum number of simultaneous
instances at 2.

e The smtp_data_done_timeout parameter is the first of two additional set-
tings that modify this daemon’s behavior. amavisd-new can take a signifi-
cant amount of time to process an incoming message, and increasing the
timeout after smtp sends the message protects Postfix from giving up
before amavisd-new is done.

¢ Because you are probably dealing only with local machine names at this
point, the disable_dns_lookups parameter disables unnecessary DNS look-
ups for the smtp client.

NOTE You don’t necessarily need a dedicated SMTP transport, because the default smtp
does the job well. However, for performance reasons (and because of the relatively
long amavisd-new timeout), it can make sense lo customize a transport just for
amavisd-new.

Defining an LMTP Transport

If you decide to use the LMTP protocol (instead of SMTP) to transport
messages to amavisd-new, add the following entry to your master.cf file:

H==== == = = = == == == = = ====
service type private unpriv chroot wakeup maxproc command
(yes) (yes) (yes) (never) (100)

H==== == = = = == == == = = ====
amavisd-new unix - - n - 2 1mtp

-0 lmtp_data_done_timeout=1200s
-0 disable_dns_lookups=yes

Configuring a Reinjection Path

Finally, you need to create a reinjection path that allows amavisd-new
to feed messages back into the Postfix queue. It’s important that this
reinjection path bypass the amavisd-new transport. Otherwise the message
will get caught in a loop, where Postfix sends the message to amavisd-new,
the mail is reinjected into the Postfix queue, and it is sent back to amavisd-
new again.

A reinjection path that bypasses any previously defined content_filter
parameter looks like this in your master.cf file:

#==== == = = = == == == = = ====
service type private unpriv chroot wakeup maxproc command
(yes) (yes) (yes) (never) (100)

Using External Content Filters 159

127.0.0.1:10025 inet n - n - - smtpd
-0 content_filter=
-0 local_recipient_maps=
-0 relay_recipient_maps=
-0 smtpd_restriction_classes=
-0 smtpd client restrictions=
-0 smtpd_helo restrictions=
-0 smtpd_sender restrictions=
-0 smtpd_recipient_restrictions=permit_mynetworks,reject
-0 mynetworks=127.0.0.0/8
-0 strict_rfc821_envelopes=yes

Of all the options in the preceding entry, the one that is absolutely
essential is the empty content_filter parameter. This overrides the content_
filter parameter in the main.cf file. The remaining options override other
main.cf parameters, including options to turn off restrictions that make no
sense for a transport listening only on the localhost network interface.

After putting all of the settings in place, you're ready to test the filter.
Remember that changes in master.cf require you to reload Postfix.

Testing the Postfix amavisd-new Filter

To test that Postfix and amavisd-new work well together, you must verify that
Postfix can send mail to amavisd-new, and that amavisd-new can reinject
messages. Testing involves the following steps:

See if Postfix listens on the reinjection path.

Mo

Send a message to Postfix, checking that it sends the message to amavisd-
new, and that the message comes back into the Postfix queue.

3. See if avirus scanner detects a test pattern.

Checking the Reinjection Path

Once you've changed the master.cf file, run the postfix reload operation to
make Postfix read the revised file and then examine the log file for any
complaints. Then, check whether the smtpd reinjection daemon is listening
on localhost, port 10025, as in the following session:

$ telnet 127.0.0.1 10025

220 mail.example.com ESMTP Postfix
EHLO 127.0.0.1
250-mail.example.com
250-PIPELINING

250-SIZE 10240000

160 Chapter 12

250-VRFY

250-ETRN

250-STARTTLS

250-AUTH LOGIN PLAIN DIGEST-MD5 CRAM-MDS
250-XVERP

250 8BITMIME

ouIT

221 Bye

Sending a Test Message to Postfix

Postfix should be able to let an uninfected message pass through the system.
Send a message from the command line, and track it with the log file
messages from Postfix and amavisd-new. For example, you could use the
following command to mail your main.cf file to recipient@example.com:

sendmail -f sender@example.com recipient@example.com < /etc/postfix/main.cf

Then take a look at the log file. The bottom of the file should have a
session that starts like the following, where Postfix assigns a message ID to
the message that you can use to track the message:

Jan 31 10:45:08 mail postfix/pickup[10096]: 2788029AB29: uid=0 from=<sender@example.com>
Jan 31 10:45:08 mail postfix/cleanup[10652]: 2788029AB29:
message-id=<20040131094508.2788029AB29@mail.example.com>

The next set of messages should show Postfix handing the message to
localhost for processing by amavisd-new (unfortunately, Postfix does not log
the port number or the name of the transport):

Jan 31 10:45:08 mail postfix/qmgr[10097]: 2788029AB29: from=<sender@example.com>, size=1271,
nrcpt=1 (queue active)

Jan 31 10:45:08 mail postfix/smtp[10660]: 2788029AB29: to=<recipient@example.com>,
relay=localhost[127.0.0.1], delay=0, status=sent (250 2.6.0 Ok, id=25809-04, from MTA: 250
Ok: queued as 377D829AB2A)

Now amavisd-new scans the message and logs that the message passed:

Jan 31 10:45:08 mail amavis[25809]: (25809-04) Passed, <sender@example.com> ->
<recipient@example.com>, Message-ID: <20040131094508.2788029AB29@mail.example.com>, Hits: -

Next, the message comes back into Postfix from amavisd-new for
reinjection into the queue. Notice that the second smtpd also logs the
message ID:

Jan 31 10:45:08 mail postfix/smtpd[10658]: connect from localhost[127.0.0.1]
Jan 31 10:45:08 mail postfix/smtpd[10658]: 377D829AB2A: client=1localhost[127.0.0.1]

Using External Content Filters 161

Jan 31 10:45:08 mail postfix/cleanup[10652]: 377D829AB2A:
message-id=<20040131094508.2788029AB29@mail.example.com>

Jan 31 10:45:08 mail postfix/qmgr[10097]: 377D829AB2A: from=<sender@example.com>, size=1723,
nrcpt=1 (queue active)

Jan 31 10:45:08 mail postfix/smtpd[10658]: disconnect from localhost[127.0.0.1]

Finally, Postfix relays the message to another host for delivery (it could
also deliver locally, if this server happened to be the final destination):

Jan 31 10:45:08 mail postfix/smtp[10655]: 377D829AB2A: to=<recipient@example.com>,
relay=relayhost[10.0.0.1], delay=0, status=sent (250 OK id=1AmrgY-00073g-00)

Checking a Test Virus Pattern

Your last test is to simulate a message infected by a virus. You can do this by
getting the EICAR test virus pattern (http://www.eicar.org) and sending it to
Postfix. Any virus scanners that don’t have this pattern specifically disabled
should be able to recognize it. For example, the following command should
send a virus to recipient@example.com:

sendmail -f sender@example.com recipient@example.com < eicar.com

The log messages look like they did before, up to the point where
amavisd-new scans the message:

Feb 6 15:48:54 mail postfix/pickup[30051]: 13B9E29AB29: uid=0 from=<sender@example.com>

Feb 6 15:48:54 mail postfix/cleanup[30741]: 13B9E29AB29:
message-1id=<20040206144854.13B9E29AB29@mail.example. com>

Feb 6 15:48:54 mail postfix/qmgr[19295]: 13B9E29AB29: from=<sender@example.com>, size=347,
nrcpt=1 (queue active)

Feb 6 15:48:54 mail postfix/smtp[30744]: 13B9E29AB29: to=<recipient@example.com>,
relay=localhost[127.0.0.1], delay=0, status=sent (250 2.5.0 Ok, id=10217-07, BOUNCE)

Feb 6 15:48:54 mail amavis[10217]: (10217-07) INFECTED (Eicar-Test-Signature),
<sender@example.com> -> <recipient@example.com>, quarantine virus-20040206-154854-10217-07,
Message-ID: <20040206144854.13B9E29AB29@mail.example.com>, Hits: -

Seeing that the message contains a virus, amavisd-new alerts
virusalert@example.com and bounces the message back to the sender:

Feb 6 15:48:54 mail postfix/smtpd[30747]: connect from localhost[127.0.0.1]

Feb 6 15:48:54 mail postfix/smtpd[30747]: 639A729AB2A: client=localhost[127.0.0.1]

Feb 6 15:48:54 mail postfix/cleanup[30741]: 639A729AB2A: message-id=<VA10217-07@mail>

Feb 6 15:48:54 mail postfix/qmgr[19295]: 639A729AB2A: from=<>, size=1463, nrcpt=1
(queue active)

Feb 6 15:48:54 mail postfix/local[30749]: 639A729AB2A: to=<virusalert@example.com>,
relay=local, delay=0, status=sent (forwarded as 8484829AB2()

162 Chapter 12

Feb 6 15:48:54 mail postfix/smtpd[30747]: disconnect from localhost[127.0.0.1]

Feb 6 15:48:54 mail postfix/smtpd[30747]: connect from localhost[127.0.0.1]

Feb 6 15:48:54 mail postfix/smtpd[30747]: 7A2FD29AB2B: client=localhost[127.0.0.1]
Feb 6 15:48:54 mail postfix/cleanup[30741]: 7A2FD29AB2B: message-id=<V510217-07@mail>
Feb 6 15:48:54 mail postfix/qmgr[19295]: 7A2FD29AB2B: from=<>, size=2554, nrcpt=1

(queue active)

Feb 6 15:48:55 mail postfix/smtp[30744]: 7A2FD29AB2B: to=<sender@example.comy,
relay=relayhost[10.0.0.1], delay=1, status=sent (250 OK id=1Ap7Ho-00014I-00)

Bouncing the message to the sender isn’t a particularly good idea,

because the sender is nearly always forged in current email viruses, but this is

unfortunately the default for amavisd-new.

Scanning for Viruses with smtpd_proxy filter and amavisd-new

A different and newer approach to content filtering in Postfix is to inspect

incoming messages before queuing them. This type of filter is called

smtpd_proxy_filter. You can use it with amavisd-new, as shown in Figure 12-3.

smtpd with

smtpd without
smtpd_proxy smtpd_proxy

_filter _filter

amavisd-new

Y

Virus Virus

Antispam
scanner | scanner 2

Figure 12-3: amavisd-new integration with Postfix using smtpd_proxy filter

Using External Content Filters

163

164

NOTE

Chapter 12

This is how the message would flow if you use smtpd_proxy_filter:

A mail client sends a message to a Postfix smtpd.

N

The smtpd (with smtpd_proxy filter enabled) hands the message to
amavisd-new. Notice that this is different from the case with content_
filter, where the queue manager requests the Postfix Imtp or smtp

client to send the message to amavisd-new.

3. amavisd-new sends the message to other applications (in this example,
to two virus scanners).

4. amavisd-new tells smtpd whether it accepted or rejected the message. If it
accepts the message, it reinjects it back into a second smtpd instance, but
if it rejects the message, it acts according to your configuration.

5. The original smtpd listens to the amavisd-new replay, accepting or reject-

ing the message from the client.

smtpd_proxy filter is the smtpd daemon being broken in two parts:
s One part sanitizes the incoming mail with the filler.
o The other part does the queuing.
This section explains how to configure amavisd-new with smtpd_proxy_
filter using the general steps described in Chapter 11. You need to perform

the following steps to integrate amavisd-new with the smtpd_proxy filter
parameter:

1. Install amavisd-new (described earlier in the chapter in the “Installing
amavisd-new” section).

2. Test amavisd-new (described in the earlier “Testing amavisd-new”
section).

Ps

Configure Postfix to use amavisd-new.

4. Test the configuration.

Configuring Postfix to Use amavisd-new with smitpd_proxy _filter

The first step is to define the transports the emails should take into the
filtering program. You'll do these three things:

1. Modify the existing smtpd transport to proxy for amavisd-new.
2. Create an additional smtpd instance to have the mail reinjected into
Postfix, circumventing any global smtpd_proxy_filter parameter.

3. Test the configuration as described in the previous section.
Modifying the Existing smtpd to Proxy

To make smtpd proxy messages to amavisd-new, append the smtpd_proxy_
filter parameter to the existing smtp service in the master.cf file. For

example, the following entry makes smtpd send messages to port 10024 on
localhost (remember that these are the default settings for amavisd-new):

#==== == = = = == == == = = =
service type private unpriv chroot wakeup maxproc command
(yes) (yes) (yes) (never) (100)
=== == = = = == == == = = =
smtp inet n - n - 20 smtpd

-0 smtpd_proxy filter=localhost:10024
-0 smtpd_client_connection_count_limit=10

Notice that -o smtpd_client_connection_count_limit=10 prevents one
SMTP client from using up all 20 SMTP server processes defined in the
maxproc column. This limit is not necessary if you receive all mail from a
trusted relay host.

Also, unlike the process used earlier for the content_filter mechanism,
you're not defining a global parameter in the main.cf file, so it will not be
necessary to explicitly override it in the reinjection transport.

Creating an Additional smtpd Instance for Message Reinjection

To let the messages reenter the Postfix queue on a non-proxying smtpd
instance, you need to add a special instance of smtpd in your master. cf file.
This example creates another instance on port 10025 of localhost:

#==== == = = = == == == = = ====
service type private unpriv chroot wakeup maxproc command
(yes) (yes) (yes) (never) (100)

=== == = = = == == == = = ====
127.0.0.1:10025 inet n . n - . smtpd

-0 smtpd_authorized xforward_hosts=127.0.0.0/8

-0 smtpd_client_restrictions=

-0 smtpd_helo_restrictions=

-0 smtpd_sender restrictions=

-0 smtpd_recipient restrictions=permit_mynetworks,reject
-0 mynetworks=127.0.0.0/8

-0 receive_override_options=no_unknown_recipient_checks

The -o smtpd_authorized_xforward_hosts=127.0.0.0/8 parameter allows
the after-filter smtpd to receive remote SMTP client information from the
before-filter smtpd. Specifically, the after-filter smtpd will accept any XFORWARD
commands sent by a host listed in smtpd_authorized_xforward_hosts. This is very
useful for debugging, because the smtpd will use the original client IP address
instead of localhost[127.0.0.1].

The remaining parameters lighten the load on the after-filter smtpd,
because the before-filter smtpd already did this work.

Using External Content Filters 165

PART Il

ADVANCED CONFIGURATIONS

In this part of the book, you will see common situations
where Postfix interacts with other third-party applica-
tions, such as SQL servers, Cyrus SASL, OpenSSL, and
OpenLLDAP. Here is an overview of the chapters in this
section:

Mail Gateways
Mail relays transport messages on behalf of other mail servers or clients.
In most cases, mail relays are exposed to the Internet, while the other
servers sit safely behind a firewall. In Chapter 13, you'll see how to make
a “smart” host out of a simple mail relay.

A Mail Server for Multiple Domains
Chapter 14 describes the two ways that Postfix can handle mail for multi-
ple domains. In addition, you will see how to configure Postfix to query
an SQL Server instead of looking at static maps.

Understanding SMTP Authentication
SMTP authentication is a system for authenticating mail clients before
they relay messages. Because SMTP authentication in Postfix relies on
the Cyrus SASL software, Chapter 15 shows you how to configure Cyrus
SASL before you can use it with Postfix.

168

Part 111

SMTP Authentication
Continuing the discussion of SMTP authentication, Chapter 16 shows
you how to configure Postfix for server- or client-side authentication
or both.

Understanding Transport Layer Security
Transport Layer Security (TLS) encrypts the communication layer
between Postfix and other hosts. The Postfix implementation of TLS
requires OpenSSL, so Chapter 17 shows you not only how TLS works,
but also how to prepare the required certificates.

Using Transport Layer Security
Chapter 18 shows you how to set up the Postfix server to offer encryption
to other hosts and how to make the Postfix client use it when other serv-
ers offer TLS. You will also see how certificate-based relaying works.

A Company Mail Server
Chapter 19 explains how to configure Postfix to query an LDAP server.
In doing so, you will delegate the job of local delivery to an MDA (mes-
sage delivery agent) and configure a basic Courier IMAP server. In the
end, you will have a complete mail system that gets user data from an
OpenLDAP server.

Running Postfix in a chroot Environment
Chapter 20 shows you how to configure Postfix to run chrooted. It
explains why some daemons must not run chrooted and gives you an
example of how to run Postfix chrooted in combination with SASL.

MAIL GATEWAYS

L A mail gateway (also called a “smarthost”) is
\"? a server that connects between networks
that are logically separate. Usually, the mail
\‘ gateway shows up as the final destination in
DNS records for other mail servers on the

Internet, and those servers have no idea that other
mail servers lie beyond the mail gateway. This chapter
shows you how to set up a mail gateway, and it discusses
the characteristics of a real smarthost.

Companies and ISPs use mail gateways to control SMTP traffic traveling
to and from their network. Usually the network setup permits traffic on port
25 to only reach the mail gateway, and forces clients within the network to
use this machine for outgoing mail. The firewall has the job of blocking the
ports, and Postfix performs the mail gatewaying.

Figure 13-1 shows a groupware server that relays all messages to the mail
gateway and vice versa. The mail gateway protects the groupware server from
outside attacks—clients and servers from outside cannot connect directly to
the groupware server.

170

P

LAN

Groupware [Mail server

DMZ

Mail relay
[Postix)

Figure 13-1: Postfix as mail relay for a groupware server

You can extend the functionality of a mail gateway by integrating features such as a
virus scanner and a centralized spam filter. In doing so, you protect the groupware not
only from malicious connections, but also from malicious content.

If you provide a velay service to customers, this chapter can help you set wp a basic
mail gateway. You can extend its services by adding support for SMTP authentication
(see Chapter 16) and Transport Layer Security (see Chapter 18).

Basic Setup

Chapter 13

A basic mail gateway setup allows Postfix to run on an external mail server
and relay mail destined for certain domains to another (internal) mail
server. To create such a mail gateway, you need to perform the following
steps on the relay:

Allow the internal server to use the gateway as relay.
Set the domains that mail will be relayed to the inside (relay_domains).
Set the host that mail will be relayed to (relayhost).

Ll U

Define the recipients mail will be relayed to the inside
(relay_recipient_maps).

Setting Gateway Relay Permissions

Your first step is to permit relaying on the mail gateway for your “hidden”
mail server. Add the internal mail server’s IP address to the list of servers in
the mynetworks parameter. For example, if the internal server’s address is
172.16.1.1, you might put this line in the mail gateway’s main.cf file:

mynetworks = 127.0.0.0/8 172.16.1.1/32

Limit relay access to your mail gateway’s localhost address (127.0.0.1)
and the internal mail server (which is 172.16.1.1 in this example), so that
other hosts inside your network can’t use the gateway as a relay.

Setting a Relay Domain on the Gateway

The next step is to tell Postfix to accept mail from the outer network for a
host on the inner network. Postfix uses the relay_domains parameter to define
a list of domains that it relays for, even if it is not the final destination for
those domains. For example, if you want to relay mail for example.com, use this
setting:

relay_domains = example.com

Setting the Internal Mail Host on the Gateway

Now that the gateway knows that it should accept mail for a certain domain,
you must tell it where to relay incoming messages that are bound for that
domain. You do this by creating a transport map, which is a file such as /etc/
postfix/transport. For example, if you want to relay messages for example.com
to mail.office.example.com, the file might look like this:

example.com smtp:[mail.office.example.com]

In this line, smtp means that Postfix should use the smtp transport type
defined in the master.cf file. The square brackets are important, because
they disable MX lookups for mail.office.example.com. Without the brackets,
Postfix would look for the MX record for mail.office.example.com. Because
this record likely belongs to the server host itself, it would try to deliver the
mail to itself, and incoming messages would loop.

Now you need to create the indexed file with this command:

postmap hash:/etc/postfix/transport

Finally, set the transport_maps parameter in your main.cf file as follows
(and then reload Postfix):

transport_maps = hash:/etc/postfix/transport

Defining Relay Recipients

What makes a gateway “smart”? A regular gateway accepts any message for
any recipient for a relay domain, including invalid recipients that do not
exist on the internal mail server that ultimately delivers the messages.

Considering the sheer amount of spam and malware flying around the
Internet today, and because there may be recipients that are not allowed to
receive messages from the outside (such as shared folders, internal mailing
lists, and perhaps even some real people), a regular gateway can cause

Mail Gateways 17

172

CAUTION

NOTE

problems because it accepts everything. In particular, it will relay mail, spam,
and viruses to nonexistent and unauthorized accounts.

Also, by accepting mail for a non-existent address, the gateway takes the
responsibility to inform the sender when mail could not be delivered. This
pollutes the mail queue with MAILER-DAEMON messages, and this causes
backscatter mail to people all over the Internet for mail that they did not send.

When Postfix does not accept the mail, that responsibility stays with the
client. When that client is a back-doored Windows PC, then no backscatter
mail will be sent at all.

A smart host knows to separate the wheat from the chaff because it has a
list of valid recipients on the internal servers. Use the relay_recipient_maps param-
eter to define and activate a list of valid users. For example, if your map name is
/etc/postfix/relay recipients, you would use this line in your main. cf file:

relay_recipient_maps = hash:/etc/postfix/relay_recipients

If you define this parameter, the map must provide a list of valid relay recipients.
Otherwise, your gateway won’t have any consistency. If you can’t provide a list, then
disable the map with a setting of relay_recipient_maps =.

Of course, when you tell Postfix where to find a map, you need to
actually provide the list. If you configured your map as in the preceding
example, create a plaintext file named /etc/postfix/relay recipients
containing valid recipients. For example, the following file enables relaying
for john@example.com and linda@example.com:

john@example.com 0K
linda@example.com oK

If you want to explicitly deny relay access to a certain recipient, use an
error code and message such as 554 Delivery not permitted instead of OK.

As with any map, you need to convert the map to the indexed database
type that you defined in the relay recipient_maps parameter. For example,
run postmap hash:/etc/postfix/relay_recipients to do so.

It’s simple to sel wp a list of valid users by hand if you have just a few users on the
remote mail server that change once in a while. More likely than not, though, you'll
have many users that continuously change, and you may not even know the list of
users. See the “Exporting Valid Recipients from Active Directory” section, later in the
chapter, for a discussion on how to automate the process. In particulay, that section
describes how to get a list of valid recipients from a Microsoft Exchange 2003 server.

Advanced Gateway Setup

Chapter 13

An advanced gateway not only forwards mail to other servers, but also protects
against local mail attacks and automates the process of updating the list of
valid recipients in the relay domain. The following sections show several
techniques for improving the general mail service provided by your gateway.

Improving Security on the Mail Gateway

So far, your Postfix installation relays all messages with an example.com address
to the inner mail server, mail.office.example.com. If that’s the only task that
your smarthost must perform (that s, if your smarthost does not receive mail
for users local to the smarthost), you should disable local delivery so that the
smarthost won’t be vulnerable to malicious messages sent to local users on
the smarthost.

Perform the following steps to disable local delivery:

1. Empty the local destination. The first step is to tell Postfix thatitis nota
final destination by setting the mydestination parameter with no destina-
tion, like this:

mydestination =

2. Disable local recipients. Set the local_recipient_maps parameter to noth-
ing so that Postfix will be unable to look up any local recipient:

local_recipient_maps =

3. Forward required local recipients. When you set the empty local _
recipient_maps parameter, messages to all local recipients are disabled.
However, you still need to keep the gateway RFC compliant, so you must
set forwarding addresses for postmaster and abuse that go to your inner
mail server.

Create a map to use as a target for the virtual_alias_maps parameter
(/etc/postfix/virtual will do fine), and add forwarding addresses for
these two recipients on the inner mail server. For example, your map file
might look like this:

postmaster postmaster@example.com
abuse abuse@example.com

Now, build an indexed map from the file with postmap hash:/etc/
postfix/virtual and refer to it in your main.cf file, like this:

virtual alias maps = hash:/etc/postfix/virtual

4. Create a local delivery error message. When you disable local delivery, you
should also tell any client that tries to send a message to the smarthost that
you disabled delivery to local recipients. To do this, define a special local
transport with the local_transport parameter that transmits an error mes-
sage. For example, the following line sends all local messages to the error
daemon, which will provide an appropriate error message:

local transport = error:local mail delivery is disabled

Mail Gateways 173

174

Chapter 13

ot

Redirect replies to local services. If you've followed the steps in the previ-
ous sections, Postfix now will not accept mail for local users other than
postmaster and abuse. However, local services, such as cron, that use Post-
fix to send status reports to administrators and users still send out mail
using sender addresses associated with the hostname of the machine.
This can be confusing, because you cannot reply to these messages.

To prevent users from sending a reply to these applications, change
the value of the myorigin parameter that Postfix appends as the domain
part of email addresses. Set myorigin to a domain that actually has a mail
server and that has mailboxes or aliases for these senders. For example,
if the internal mail server that is the ultimate destination for example.com
can provide this service, you might use this setting:

myorigin = example.com

6. Disabling the local delivery agent. Finally, you can prevent the master
daemon from starting the local delivery agent—this effectively turns off
the local delivery agent because there are no recipients on this machine.
Edit your master.cf file, and comment out the line containing the local
service by placing a hash (#) in front of the line, like this:

#

service type private unpriv chroot wakeup maxproc command + args
(yes) (yes) (yes) (never) (100)

#

smtp inet n - n - - smtpd

local unix - n n - - local

virtual unix - n n - - virtual

1mtp unix - - n - - Imtp

anvil unix - - n - 1 anvil

After you reload Postfix, it will no longer accept messages for local
recipients.

Using Postfix with Microsoft Exchange Server

Microsoft Exchange Server is, without a doubt, a powerful groupware
server, but its security record and stability when under attack is not so hot.
Therefore, many postmasters augment its groupware functionality with a
Postfix gateway. This section discusses how you can provide a Postfix gateway
host with a list of valid recipients and how to automate the procedure.

The easiest and most common solution to making Postfix and Exchange
Server work together is to have the Postfix relay host query the Exchange
Server using LDAP (Lightweight Directory Access Protocol). The relay host
will query the Exchange Server every time a message arrives in order to

determine whether the recipient is valid. However, this approach involves risks
and limitations. The alternative is to have the Exchange Server push the list of
recipients to the Postfix server, which is better in the following respects:

Security

No matter what package you run on your inner mail server, you want to
keep it as far as possible from security threats. That’s why you put it
behind a firewall in the first place. One of the basic rules of security is to
permit only what should be permitted and to deny everything else.

The first impulse of many systems administrators is to have Postfix
use LDAP queries to ask the remote Exchange Server for valid recipients.
To do this, you must open port 389 (TCP/UDP) on the Exchange Server
to permit connections from Postfix. This is relatively easy, but it opens a
port to your internal LAN.

Switching directions is safer, with Exchange providing Postfix with
a list of valid recipients only when the recipient list changes. With the
administrator of the Exchange Server pushing this list to the smarthost
with scp or rsync, you don’t need to open a port from the DMZ to
the LAN.

Performance

LDAP queries are slow compared to the indexed maps that Postfix uses.
If you provide Postfix with a static list of valid recipients, the smarthost
can process messages very quickly.

Stability

A smarthost exists to protect the inner mail server, and it’s counterproduc-
tive when a smarthost under attack brings down the inner server. This can
happen because spammers use dictionary attacks to send messages to a
large number of recipients at once, and this would cause a mail relay using
LDAP to send a large number of queries to the server that it is supposed to
protect, asking about valid recipients. This would slow down (if not dis-
able) the Active Directory and thus Exchange Server, turning a dictionary
attack into a denial-of-service attack. If a mail server is to go down, you
want it to be the smarthost on the outside, not the inner mail server.

In this section you will send valid recipients from an Exchange 2003 Server to
a Postfix mail relay by following these steps:

ovoe W

=)

Export a list of all valid recipients.

Copy the list to the mail relay.

Extract the valid recipients from the list.
Create a map of relay recipients.

Index the map of relay recipients.

Automate the procedure.

Mail Gateways]75

Exporting Valid Recipients from Active Directory

Microsoft uses the proxyAddresses attribute in its Active Directory to store the
valid recipient addresses for Exchange. An easy way to export proxyAddresses
from Microsoft’s Active Directory is to use csvde, a command-line tool
available on every Exchange Server—it will not require you to use a self-
written script. For example, to export the values for proxyAddresses to a file
named C:\export\example_com recipients.txt, you can simply use this
command from a Command Prompt window:

C:\> csvde -m -n -g -f "C:\export\example_com_recipients.txt" \
-r " (| (&(objectClass=user)(objectCategory=person)) \
(objectClass=groupOfNames) (objectClass=msExchDynamicDistributionList))" \
-1 proxyAddresses

TP There are thousands of ways to organize and structure an Active Directory, so it can be
difficult to find the object names that you need to export from your Active Directory.
The Exchange installation gives you the option to install several support tools,
including the ADSI Edit module. Add it to your MMC (Microsoft Management
Console). With this in place, running mmc.exe from the command line gives you full
access to the object names in the Active Directory.

The output from the preceding command contains much more
information than Postfix needs. For example, you might get this in the
output file:

DN, proxyAddresses

"CN=Administrator,CN=Users,DC=example,DC=com",smtp:abuse@example.com;SMTP:\
Administrator@example.com; X400:c=DE\;a= \;p=Example Corporat\;o=Exchange\;s=Administrator\
5 ;smtp:postmaster@example.com

"CN=Gast,CN=Users,DC=example,DC=com",

"CN=SUPPORT_388945a0,CN=Users ,DC=example,DC=com",

"CN=krbtgt, (N=Users,DC=example,DC=com",

"CN=IUSR_MAIL,CN=Users,DC=example,DC=com",

"CN=IWAM_MAIL,CN=Users,DC=example,DC=com",

"CN=Wilma Pebble,OU=purchasing,DC=example,DC=com",smtp:wilmapebble@example.com;smtp:\
wilma@example.com;smtp:wilma.pebble@example.com;SMTP:w.pebble@example.com;smtp:\
pebble@example.com; X400:c=DE\;a= \;p=Example Corporat\;o=Exchange\;s=Pebble\;g=Wilma\;

"CN=Betty McBricker,OU=purchasing,DC=example,DC=com",smtp:mcbricker@example.com;smtp:\
bettymcbricker@example.com;smtp:betty@example.com;smtp:betty.mcbricker@example.com;\
SMTP:b.mcbricker@example.com;X400:c=DE\;a= \;p=Example Corporat\;o=Exchange\;\
s=McBricker\;g=Betty\;

"CN=Fred Flintstone,OU=sales,DC=example,DC=com",smtp:fredflintstone@example.com;\

SMTP: fred.flintstone@example.com;smtp:f.flintstone@example.com;smtp:fred@example.com;\
smtp:flintstone@example.com;X400:c=DE\;a= \;p=Example Corporat\;o=Exchange\;\
s=Flintstone\;g=Fred\;

176 Chapter 13

"CN=Barney Rubble,OU=sales,DC=example,DC=com",SMTP:barney.rubble@example.com;\
smtp:barneyrubble@example.com; smtp:rubble@example.com;smtp:barney@example.com;smtp:\
b.rubble@example.com;X400:c=DE\;a= \;p=Example Corporat\;o=Exchange\;s=Rubble\;g=Barney\;

"CN=Bamm Bamm,0U=it,DC=example,DC=com", smtp:bammbamm@example.com;smtp:\
bamm@example.com; smtp:bamm.bamm@example.com;SMTP:b.bamm@example.com;\

X400:c=DE\;a= \;p=Example Corporat\;o=Exchange\;s=Bamm\;g=Bamm\;

"CN=SystemMailbox{CSC3EAFC-A32F-4925-85A5-3C08709DE617},(N=Microsoft Exchange System\
Objects,DC=example,DC=com”, SMTP:SystemMailbox{C5C3EAFC-A32F-4925-85A5-3C08709DE617}\
@example. com;X400:c=DE\;a= \;p=Example Corporat\;o=Exchange\;s=SystemMailbox?\
C5C3EAFC-A32F-4925-85A5-3C\;

"CN=it-department,0U=it,DC=example,DC=com",SMTP:it-department@example.com;\

X400:c=DE\;a= \;p=Example Corporat\;o=Exchange\;s=it-department\;

"CN=purchasing-department,OU=purchasing,DC=example,DC=com" , SMTP:purchasing-department@example.com;\
X400:c=DE\;a= \;p=Example Corporat\;o=Exchange\;s=purchasing-department\;

"CN=sales-department,0U=sales,DC=example,DC=com",SMTP:sales-department@example.com;\
X400:c=DE\;a= \;p=Example Corporat\;o=Exchange\;s=sales-department\;

The valid recipients are the values marked with smtp (aliases) and SMTP
(primary addresses). You need to extract the values associated with smtp and
SMTP to create a list that the Postfix smarthost can use. You'll eventually do
this with a script on the smarthost, but for now you simply need to get the list
to the smarthost.

Sending the Recipient List to the Mail Relay

There are many ways to copy a file from your Exchange Server to your
smarthost, but among the best is secure copy (scp), an encrypting,
automatable utility supported by both Windows and Unix.

The following steps are involved in automating the file transfer to the

smarthost:

1. Getasecure copy (scp) client for Windows; for example, PuTTY.
2. Create a copy user on the smarthost.

3. Create authentication keys.

4. Add the public key to the authorized keys.

5. Copy the private key to the Windows host.

6. Convert the SSH key into PuTTY’s key format.

7. Copy the export file to the smarthost.

Getting a Secure Copy Client for Windows

Among the many clients that allow you to use scp to copy files from a
Windows host is PuTTY, a free Telnet and SSH client. You can download
it from http://www.chiark.greenend.org.uk/~sgtatham/putty.

Mail Gateways 177

178

Chapter 13

You need to download pscp.exe and puttygen.exe from this package to
perform the operations required in this example. Copy the executables to a
path that Windows searches, such as C:\Windowus.

Creating a Copy User on the Smarthost

To accommodate the file transfer, create a user on your smarthost. This
account will serve only to receive the exported list of recipients. For example,
you could create a user named e3k with this command:

useradd e3k

After creating a user, set its password using the passwd command. You’ll
use the password during the setup process, but you can disable it when
everything is running smoothly.

(reating Authentication Keys

The next step is to create a set of authentication keys so that you don’t need
a password to transfer the files from the Windows server to the smarthost. As
root on the smarthost, run su - e3k to switch to the e3k user and run ssh-
keygen to create the keys: For example, you can run the following command
as e3k:

$ ssh-keygen -t rsa

Generating public/private rsa key pair.

Enter file in which to save the key (/home/e3k/.ssh/id rsa):

Created directory '/home/e3k/.ssh'.

Enter passphrase (empty for no passphrase): @

Enter same passphrase again:

Your identification has been saved in /home/e3k/.ssh/id_rsa.

Your public key has been saved in /home/e3k/.ssh/id_rsa.pub.

The key fingerprint is:
17:7e:78:9e:39:0e:04:b7:ee:6d:39:28:c6:21:e4:84 e3k@mail.example.com

® Do not provide a passphrase if you want the copy process to run
unattended. If you enter a passphrase, you will need to use it whenever
copying the export file to the smarthost.

The preceding command creates two files: .ssh/id_rsa and .ssh/
id_rsa.pub. The former is the private key; don’t let it out of your sight (no
host should have it other than your Windows machine).

Adding the Public Key to the Authorized Key List

Now that you have the keys, you need to tell your SSH server about the public
key that you just created. To append a public key from the file id_rsa.pub to
the list in the $HOME/.ssh/authorized_keys file for your copy user (e3k), run the
following command.

$ cd .ssh
$ cat id_rsa.pub >> authorized_keys

After creating the authorized_keys file, make sure that it has the correct
permissions, or else the SSH server will refuse to use the file for
authentication:

$ chmod 644 authorized_keys
$ 1s -1 authorized_keys
~IW-T-=T== 1 e3k e3k 230 May 13 10:38 authorized_keys

Copying the Private Key to Windows

Next you need to copy the private key from the smarthost to your Windows
host. The easiest way to do this is to use the pscp.exe command on the
Windows machine. If the IP address of your smarthost were 172.16.1.1, you
would run this command at the command prompt:

> C:\export> pscp e3k@172.16.1.1:/home/e3k/.ssh/id_rsa .
e3k@172.16.1.1's password:
id rsa | 0 kB | 0.9 kB/s | ETA: 00:00:00 | 100%

Use the password you created for the user in the “Creating a Copy User
on the Smarthost” section.

Converting the SSH Key to the PuTTY Key Format

PuTTY uses a format different than most Unix SSH packages do to store
public and private keys, so you will need to convert the private key into
PuTTY’s own format to use it. The puttygen utility can convert the key;
run it from the command line as follows:

C:\export> puttygen id_rsa

This command starts a GUI client that loads the private key. You should
now see the dialog box in Figure 13-2.

PuTTYgen Notice [|

@ Successfully imparted Foreign key
{OpenSSH SSH2 private key),
To use this key with PuTTY, you need to
use the "Save private key" command to
save it in PuTTY's own format.,

Figure 13-2: Successful key import with Pu TTYgen

Mail Gateways 179

180

Chapter 13

Click OK to confirm the message. The PuTTY Key Generator dialog box
shown in Figure 13-3 will be displayed. Give the converted key a name (such
as example_com.ppk), and click the Save private key button.

cf PuTTY Key Generator m

File Key Conversions Help

~ Key
Public key for pasting into OpenSSH autharized_keys file:

sshersa]
AAAAB3NZaC pe2EAALABIWAAAIEAYREmARWE FYSnkmdib<xNG T af 3+ 3H 0l mjwnl
eawassMzS cPubglIPyl8d9aocyehHvRiMOm dramBuOwal 4giwiLIO fsX w3y mdk
BovB 2Z+Wwaudll+q+248cDCOTN|pOdHDHSIBBD vnRtt=AXI 8w U dh8yDaR LvdrwEil)

= imported-openssh-key L]
Key fingerprint: [sshrsa 1024 66:55:fd19:0c:12:85:6f: a2:0a: 3e:barad:fe:ef.Ob
Key comment: Iimported-openssh-key

Key passphrase; |

Confirm passphrase: I

~ Actions
Generate a public/private key pair Generate I
Load an existing private key file Load
Save the generated key Save public key | Save prrigale key l
JV@
~ Parameters
Type of key to generate: :
" SSH1 (RSA) (OF " SSH2DSA

Nurmber of bits in a generated key: |1024

Figure 13-3: Saving the private key in PuTTYgen

As shown in Figure 13-4, the Key Generator will warn you about the
empty passphrase in the key. Click Yes to save the key without a passphrase
and to store the private key. Now your Windows host is ready to use scp to
transfer files to the smarthost using an authentication key.

PuTTYgen Warning

Are you sure you want ko save this key
without a passphrase to protect it?

Figure 13-4: PuTTY warning about the empty passphrase in the key

Copying the List of Recipients to the Smarthost

Keep your Command Prompt window open to copy a file from your Windows
host to the smarthost using the pscp.exe utility (the scp belonging to PuTTY).
When you run pscp, you must identify the private key, the file to be copied,
and the user that will do the copying. In our example, the private key is in
the example_com.ppk file, example_com_recipients.txt is the file to be copied, and
the user is e3k. To put the file in /home/e3k, you would use this command:

C:\export> pscp -i example_com.ppk example_com_recipients.txt e3k@172.16.1.1:/home/e3k/
Authenticating with public key "rsa-key-20040512"
example_com_recients.txt | 2 kB | 2.4 kB/s | ETA: 00:00:00 | 100%

After successfully copying the file to the smarthost, you can store the
csvde export command from the earlier “Exporting Valid Recipients from
Active Directory” section and the preceding pscp command in a batch file
named export_valid_recipients.bat. Then you can run it with a mouse click
whenever you create, change, or delete a recipient. The file would look
something like this:

csvde -m -n -g -f "C:\export\example com recipients.txt" \
-1 "(](&(objectClass=user)(objectCategory=person)) \
(objectClass=groupOfNames) (objectClass=msExchDynamicDistributionList))" \
-1 proxyAddresses

pscp -i example_com.ppk example_com _recients.txt e3k@172.16.1.1:/home/e3k/

After verifying that this batch file works, you can disable the copy user
password on the smarthost using a command such as usermod -L e3k so
that remote access to the e3k account is only possible with an authenti-
cation key.

Building the Recipient Map

You now have the Active Directory export file on your smarthost, so you
can extract recipients from the file with a script. There are two things to
remember when doing so:

e Microsoft uses both SMTP and smtp to denote recipient addresses, so the
script must catch both variants,

¢ Your script must be able to exempt a few recipients that should not
receive mail from the outside. An example is the SystemMailbox mailbox
used by Exchange for internal communication.

The following script, called extract_valid recipients, extracts all valid
recipients and places them in a file, but it does not include the recipients
listed in the file blacklist.

Mail Gateways]3]

#!/bin/sh

Extract all addresses that start with SMTP or smtp from

an Active Directory export, but omit those that are listed in blacklist

cat $1 | tr -d \" | tr, \\n | tr \; \\n | awk -F\: '/(SMTP|smtp):/ {printf("%s\tOK\n",$2)}' | \
grep -v -f blacklist > $2

The blacklist file looks like this:

Administrator
SystemMailbox

Run the command extract_valid_recipients to run the script, and it will
produce a list of valid recipients in the relay_recipients file.

extract_valid_recipients /home/e3k/example_com_recipients.txt relay recipients
The output should look like this:

abuse@example.com 0K
postmaster@example.com 0K
wilmapebble@example.com (1] 4
wilma@example.com 0K
wilma.pebble@example.com 0K
w.pebble@example.com 0K
pebble@example. com 0K
mcbricker@example.com 0K
bettymcbricker@example.com 0K
betty@example.com 0K
betty.mcbricker@example.com (0] 4
b.mcbricker@example.com 0K
fredflintstone@example.com 0K
fred.flintstone@example.com 0K
f.flintstone@example.com 0K
fred@example.com 0K
flintstone@example.com 0K
barney.rubble@example.com 0K
barneyrubble@example.com 0K
rubble@example. com 0K
barney@example. com OK
b.rubble@example.com 0K
bammbamm@example. com 0K
bamm@example.com 0K

bamm. bamm@example.com 0K
b.bamm@example. com 0K
it-department@example.com 0K
purchasing-department@example.com 0K
sales-department@example.com (1] 4

182 Chapter 13

If this output looks correct, convert it using postmap (for example, with a
command like this: postmap hash:relay_recipients), and move it to the path
that your relay_recipient_maps parameter points to (this was discussed in the
earlier “Defining Relay Recipients” section). For example, you can use a
command like the following:

mv relay recipients.db /etc/postfix/relay_recipients.db

CAUTION Do not point relay recipient_maps directly to your newly crealed relay recipients
map (for example, hash: /home/e3k/relay_recipients)! Postfix would quil services if
the map conversion failed. The safe way is to convert the map first, and only if this suc-
ceeds move it to the location where relay_recipient_maps points.

Building the Sender Access Map

As an added bonus, your Active Directory export file can also give Postfix a
list of senders that are permitted to send mail to the outside world. To do
this, you can write a script just like the one in the “Building the Recipient
Map” section, but with one small change: Microsoft uses SMTP to denote valid
sender addresses, so the address extraction script should process only
elements with this mark.

NOTE This is useful for preventing viruses from using the Outlook Contacts folder to build
false sender addresses and then sending mail out of your network.

You can call the script extract_valid_senders, and it should look like this:

#!/bin/bash

Extract all addresses that start with SMTP from an Active Directory

export, but omit those that are listed in blacklist

cat $1 | tr -d \" | tr , \\n| tr \; \\n | awk -F\: "/SMTP:/ {printf("%s\tOK\n",$2)}" | \
grep -v -f blacklist > $2

This time, when you run the following command, you should get a
shorter list than before because there are no aliases:

./extract_valid_senders /home/e3k/example com_recipients.txt example_com senders

The output should look something like the following, which is based on
the earlier example:

w.pebble@example.com 0K
b.mcbricker@example.com 0K
fred.flintstone@example.com 0K
barney.rubble@example.com 0K
b.bamm@example.com 0K
it-department@example.com OK
purchasing-department@example.com 0K
sales-department@example.com 0K

Mail Gateways 183

184

Chapter 13

In the preceding command-line example you redirected the output to a
file named example_com_senders. Now create an indexed database from it with
the postmap hash:example_com_senders command. Then create a restriction (see
Chapter 8) that checks envelope senders with these constraints:

¢ If the mail comes from the internal server, it must carry one of the valid
envelope sender addresses.

e If the mail does not come from the internal server, the restriction does
not apply.

To configure Postfix to apply this conditional restriction, define a
restriction class that triggers the envelope sender restriction when the mail
comes from the internal mail server. For example, your main.cf file might
contain the following:

smtpd_restriction_classes =
must_be_valid_sender @

must_be_valid sender = @
check_sender_access hash:/etc/postfix/example_com_senders
reject

smtpd_recipient_restrictions =
check_client_access hash:/etc/postfix/example_com_ip ©
reject_unauth_destination

@ must_be_valid_sender is the name of a restriction that contains the
subset of restrictions that are applied when mail stems from the internal mail
server; this line simply lists the restriction classes.

® The definition of this restriction contains the procedure for messages
coming from the internal server: first check the list of valid envelope senders,
and reject any other envelope sender.

© check_client_access triggers the execution of the must_be_valid_sender
restriction class.

Finally, you need to add the IP address of your internal mail server to
the/etc/postfix/example_com_ip file, along with the restriction action to be
taken. For example, the following line specifies that if a message comes from
172.16.1.1, Postfix should apply the must_be_valid_sender restriction:

172.16.1.1 must_be_valid_sender

After adding these configuration options, you must reload Postfix to
make the changes take effect.

Automating the Map-Building Process

You can automate the map-building process on the smarthost. The following
example uses a Makefile that you can download from the Book of Posifix
website (http://www.postfix-book.com).

Makefile to automate map build process

configuration settings

Location of the file we extract the data from
ADS_DUMP=/home/e3k/example com recipients.txt
Location of the .proto files
PROTO_PATH=relay recipients
PROTO_PATH2=valid_senders

destination of successfully built maps
MAP_PATH=/etc/postfix/relay_recipients
MAP_PATH2=/etc/postfix/valid_senders

type and suffix of the maps to build
DB_TYPE=hash

DB_SUFFIX=db

Makefile options

#

build all maps

all: $(MAP_PATH).$(DB_SUFFIX) $(MAP_PATH2).$(DB_SUFFIX) blacklist
extract valid recipients from $(ADS_DUMP) to $(PROTO_PATH).proto

$(PROTO_PATH) . proto: $(ADS_DUMP)

./extract valid recipients $(ADS DUMP) $(PROTO_PATH).proto
extract valid senders from $(ADS_DUMP) to $(PROTO_PATH2).proto
$(PROTO_PATH2).proto: $(ADS_DUMP)

./extract_valid_senders $(ADS_DUMP) $(PROTO_PATH2).proto
build map of valid recipients from $(PROTO_PATH).proto
$(MAP_PATH).$(DB_SUFFIX): $(PROTO_PATH).proto

/usr/sbin/postmap -w $(DB_TYPE):$(PROTO_PATH).proto 8& \

mv $(PROTO_PATH).proto.$(DB_SUFFIX) $(MAP_PATH).$(DB_SUFFIX)
build map of valid senders from $(PROTO_PATH2).proto
$(MAP_PATH2).$(DB_SUFFIX): $(PROTO_PATH2).proto

/usr/sbin/postmap -w $(DB_TYPE):$(PROTO_PATH2).proto && \

mv $(PROTO_PATH2).proto.$(DB_SUFFIX) $(MAP_PATH2).$(DB_SUFFIX)
remove all proto maps
clean:

mm -f $(PROTO_PATH).* $(PROTO_PATH2).* *~

Once you've successfully run make to verify that the conversion works, you
can create a cron job to run it automatically. For example, the following job
in your crontab would run every 15 minutes:

0,15,30,45 * * * * cd /root/relay_recipients && /usr/bin/make

Configuring Exchange and Postfix Communication
This section explains how to configure Microsoft Exchange to relay all mail
through your Postfix gateway, and also how to configure Exchange so that it
does not accidentally swamp your Postfix server.

By default, Exchange does not relay outbound messages to a gateway.
To initiate the configuration for a relay, perform the following steps.

Mail Gateways 185

186

NOTE

Chapter 13

1. Start the Exchange System Manager from the Programs menu.
2. Select Server from the tree menu on the left.

3. Select your mail host from the subtree.

4. Select Protocols from the Hosts menu.

5. Select SMTP from the Protocols menu.

6. Right-click the SMTP menu, and select Properties from the Default
SMTP Virtual Server menu entry.

7. Select the Delivery tab in the Default SMTP Virtual Server properties
window.

You’re now ready to finish the configuration. The steps are described in
the following sections.

Setting the Postfix Server as the Smarthost

The first thing to do is configure Exchange to send all outbound messages to
your Postfix gateway. Select Advanced Delivery from the Delivery tab, and
enter the fully qualified domain name (FQDN) of your Postfix smarthost
(such as postfix.example.com), as shown in Figure 13-5.

Advanced Delivery [X| |

Masimum hop count:
l 30

Masquerade domain;

Fully-qualified domain name:

Iexchange_enamp!e_com LCheck DNS |

Smart host:

| postfix. example.com

[V Perform reverse DNS lookup on incoming messages

Configure extemal DNS Servers: Configure. .. |
[ok | cancel | Hep |

Figure 13-5: Configuring the location of the smarthosts in Exchange 2003

Exchange does not accept an IP address as a value for the Smart host field. Either add
the smarthost to the (internal) DNS queried by the Exchange Server, or set it statically
with the hosts file on your Exchange Server.

After setting the FQDN of the smarthost, you need to stop and start the
Default SMTP Virtual Server of your Exchange Server to make the changes
effective.

Limiting Outhound Connections

So far, you've put a lot of effort into protecting the internal mail server from
rude behavior from the smarthost. The next step serves to protect Postfix
from being overloaded by messages from your Exchange Server. All you need
to do is limit the number of simultaneous outgoing connections.

NOTE The default setting in Exchange is 1,000 simultaneous connections. If the outgoing
matl queue carries that many messages (which is likely to happen on a larger network
after a vestart of Exchange’s SMTP services), it will displace its large load to the
smarthost within a matter of minultes, and this can bind too many resources on
the smarthost, especially if it does not offer services for a single internal mail server.

In this case, it’s better to have the Exchange Server firocess its oulgoing mail queue
at a slower pace. If yow don’t have access to the server, you can also use the Postfix rale-
limiting mechanisms described in Chapter 21 lo force a limited number of connections
from the host.

Select Outbound Connections from the Delivery tab of the Default
SMTP Virtual Server window, and set the limit to 50 simultaneous connec-
tions, as shown in Figure 13-6. This has proved to be a good setting under
regular circumstances.

Outbound Connections E3

IV Limit number of connections to: 50
Time-gut [minutes): 10
[V Limit number of connections per domain to: 10

TCP port: 25

ok | Cancel | Help

Figure 13-6: Limiting the number of outgoing connections in Exchange

1L

NAT Setup

A Postfix mail server behind a NAT gateway runs into problems because the
NAT gateway modifies the IP packets (replacing the destination address)
before it transmits them to Postfix. This means that smtpd will listen only to
the gateway’s private IP address, while the NAT gateway accepts connections
to the “official” IP address.

Malil Gateways]B?

188

Chapter 13

This is only an issue because the email RFCs require the mail server to
accept mail sent to postmaster@[address] where address is an IP address. Some
blacklists send delisting information only to that address.

You can configure Postfix to accept mail to postmaster@[address] by using
the proxy_interfaces parameter. Even if Postfix only listens to an internal IP
address, it will accept mail addressed to user@[address]. If your NAT gateway
has the address 192.0.34.166, you would use this setting:

proxy_interfaces = 192.0.34.166

A MAIL SERVER FOR MULTIPLE
DOMAINS

} Postfix can send, receive, and store

"b/ messages for more than one domain by
using either of two distinct methods. The
first method uses virtual alias domains, which
simply expands the number of domains for which the

server is the final destination. The second method
involves virtual mailbox domains and goes further, because virtual mailbox

domains do not need local accounts. This chapter shows you how to imple-
ment both approaches for offering SMTP services to more than one domain.

Virtual Alias Domains

Normally, Postfix recognizes itself as the final destination only for domain
names specified with the mydestination paramel.(-r:‘.] The domains listed in
mydestination are called the canonical domains, because they normally list all
the names of the local machine (and perhaps its parent domain name).

! Postfix also recognizes itself as the final destination for addresses of the form user@[ipaddress]

190

NOTE

Chapter 14

In this chapter we describe a number of methods to make Postfix the
final destination for additional domains. These additional domains are called
virtual because they have nothing to do with the machine’s own name.

To configure basic services for a virtual alias domain, you must perform
the following steps:

1. Set the virtual alias domain name,

2. Create a map of recipient addresses.

3. Configure Postfix to receive mail for virtual alias domains.
4. Test the new configuration.

5. Create advanced mappings.
These steps are described in the following sections.

Setting the Virtval Alias Domain Name

Your first step is to tell Postfix that it is the final destination for a domain

in addition to the system default. Postfix uses the virtual _alias_domains
parameter to define a map of virtual domains. To use this parameter, create
a map file, such as /etc/postfix/virtual_alias_domains, containing the virtual
domains in a format like this:

virtual alias domains
postfix-book.com 20021125

In the preceding example, the number on the right hand side is the
domain’s creation date, but you can set it to whatever you like. Postfix does
not use the right-hand side when looking at a map for the virtual_alias_
domains parameter, but Postfix maps always require both a right-hand side
and a left-hand side.

After creating the file, convert it to an indexed map with this command:

postmap hash:/etc/postfix/virtual_alias_domains

If you list a domain as being virtual, don’t use il as the value for your mydestination
parameter, because unexpected things may happen. Posifix would not know if it should
deliver the mail locally or send it off to virtual rewriting. That's why Postfix will com-
plain loudly about such a configuration in the log.

Creating a Recipient Address Map

The next step in configuring a virtual alias domain is to create an /etc/
postfix/virtual_alias_maps file to map the virtual alias domain recipient
addresses to local recipient addresses. The following example includes single
and multiple recipients.

CAUTION

postfix-book.com
postmaster@postfix-book.com ralf@example.com

abuse@postfix-book.com abuse@example.com, patrick@example.com
ralf@postfix-book.com ralf@example.com
patrick@postfix-book.com patrick@example.com

Make sure that you include targets for postmaster and abuse, because the
RFCs require that all domains have recipients for these addresses.

Always use fully qualified domain names in your recipient addresses on the right side of
your virtual_alias_maps file. Otherwise you leave too much room for interpretation. If
you specify just the localpart (for example, ralf) the Posifix trivial-rewrite daemon
will add the domain part specified by myorigin. The local user ralf@$myorigin may not
be correct, depending on the values of myorigin and mydestination.

With this file in place, create an indexed map with this command:

postmap hash:/etc/postfix/virtual_alias_maps

Configuring Postfix to Receive Mail for Virtval Alias Domains

Now that you have both maps in place, you must configure Postfix to receive
mail for your virtual alias domain according to the rules in the recipient
map. The parameters you need to set in main.cf are virtual_alias_domains
and virtual_alias_maps. Using the file names from previous sections, the
parameters should read as follows:

virtual_alias_domains = hash:/etc/postfix/virtual_alias_domains
virtual_alias_maps = hash:/etc/postfix/virtual_alias_maps

Reload Postfix and test the virtual alias domains as described in the next
section.

Testing Virtval Alias Domain Settings

You can test your virtual alias domain settings by sending a message to
existing and unknown recipients in both domains.

Sending to a Valid Address in a Virtual Alias Domain

This is how you might send a message to a valid recipient (postmaster):
$ echo test | /usr/sbin/sendmail postmaster@postfix-book.com
Verify that the message went through by looking at the log file. You

should see log messages like the following.

A Mail Server for Multiple Domains 191

192

Chapter 14

Apr 19 11:20:50 mail postfix/pickup[17850]: B8C4629AB38: uid=0 from=<root>

Apr 19 11:20:50 mail postfix/cleanup[17863]: B8C4629AB38:
message-id=<20040419092050.B8C4629AB38@mail.example.com>

Apr 19 11:20:50 mail postfix/qmgr[17851]: B8C4629AB38:
from=<root@mail.example.com>, size=282, nrcpt=1 (queue active)

Apr 19 11:20:50 mail postfix/local[17866]: BB8C4629AB38: to=<ralf@example.com>,

orig_to=<postmaster@postfix-book.com>, relay=local, delay=0, status=sent
(mailbox)

The test message first went to postmaster@postfix-book.com; due to the
entries in virtual_alias_maps, mail to postmaster@postfix-book.com goes to
ralf@example.com. It was then delivered locally to the user ralf, because
example.com is the “real” domain.

Sending to an Invalid Address in a Virtual Alias Domain

This is how you might send a message to an invalid recipient (nouser):

$ echo test | /usr/sbin/sendmail nouser@postfix-book.com

$ tail -f /var/log/mail.log

Apr 19 11:21:23 mail postfix/pickup[17850]: 9B61F29AB38: uid=0 from=<root>

Apr 19 11:21:23 mail postfix/cleanup[17863]: 9B61F29AB38:
message-1id=<20040419092123.9B61F29AB38@mail.example.com>

Apr 19 11:21:23 mail postfix/qmgr[17851]: 9B61F29AB38:
from=<root@mail.example.com>, size=282, nrcpt=1 (queue active)

Apr 19 11:21:23 mail postfix/error[17887]: 9B61F29AB38:
to=<nouser@postfix-book.com>, relay=none, delay=0, status=bounced
(user unknown in virtual alias table)

This mail was addressed to nouser@postfix-book.com. Because there was no
entry in virtual_alias_maps, mail to nouser@postfix-book.com bounces with the
error message “user unknown in virtual alias table.”

Advanced Mappings

The more virtual alias domains you add, the likelier it is that you will have
to add the same map entries over and over again. That’s when catchalls—
regular expression entries and implicit mappings—come in handy. They are
described in the following subsections.

Catchall Entries

In some situations, you may want mail to an unknown user in a virtual
alias domain to go to a catchall address. The virtual (5) manual page lists
a number of ways that you can do this in a virtual_alias_maps map entry.
The one that has the least precedence is as follows:

@postfix-book.com catchall@example.com

For the preceding entry, if your Postfix server cannot find a match for
unknownuser@postfix-book.com in the virtual alias domain alias map for postfix-
book.com, Postfix maps this address to catchall@example.com.

Regular Expression Entries

You can use regular expressions in virtual_alias_maps to map mail to a set
of unknown users in a virtual alias domain to a catchall account. In addition,
you can substitute the match on the LHS into the target address on the
RHS—this is shown in the example below. This can be handy if you send
matched addresses to a program that you specify in an alias_maps entry.

To get an idea of how this works, consider the following virtual_alias_
maps entry:

/*(.*)@postfix-book\.com$/ catchall+$i@example.com
When a message arrives for an unknown user, the following happens:

1. Mail to unknownuser@postfix-book.com is mapped to catchall+unknown-
user@example.com.

2. Postfix delivers the message to the local, existing recipient catchall@exam-
ple.com, but during delivery to a program, it sets the $EXTENSION environ-
ment variable to unknownuser—as described in the local (8) manual page.
(The recipient_delimiter parameter sets the extension delimiter; by
default, it is +.)

3. Ifa program handles mail for the catchall address, it can use the
$EXTENSION environment variable to find the intended recipient and
construct an informational message to send back to the original
sender. You can find an example of such a program, named fuzzy,
at http://www.stahl.bau.tu-bs.de/~hildeb/postfix.

There are plenty of other ways that you can use regular expressions in
your virtual_alias_maps map. One particularly useful practice is to map
addresses that match a certain pattern to a single recipient. Let’s say that you
have several admin-name@example.com addresses that should go to a single
mailbox. You could try an entry like this:

/"admin- . *@postfix-book\.com$/ mailbox@example.com
This is much nicer than specifying each mapping by hand, like this:

admin-firewall@postfix-book.com mailbox@example.com
admin-mail@postfix-book.com mailbox@example.com
admin-web@postfix-book.com mailbox@example. com

A Mail Server for Multiple Domains 193

194

CAUTION

Implicit Mappings for Multiple Domains

At times, it can be useful to create a generic mapping that applies to multiple
domains. For example, your goal could be to create a generic postmaster

recipient that always matches, no matter how many virtual alias domains you
host. You can do this by adding the following entry to your virtual alias map:

postmaster postmaster@example.com

With this in place, all messages addressed to a recipient with a localpart of
postmaster go to postmaster@example.com. Because of the preceding entry, Postfix
will accept mail for these addresses and deliver them to postmaster@example.com:

e postmaster@myorigin
e postmaster@[$inet_interfaces]
e postmaster@mydestination

Notice that not all of these are virtual alias domains and that these three
domains may not necessarily cover all of your virtual alias domains. Take a
look at the virtual(5) man page, which describes the search order in detail. If

you want all of your virtual alias domains to have the same postmaster address,
write a script to add them to the virtual_alias_maps.

You can’t use configuration variables (such as $myorigin) in a map. Postfix won’t
expand the variables. Our notation only serves as an illustration.

Virtual Mailbox Domains

Chapter 14

Virtual mailbox domains are domains for users that don’t have a local
account (that is, for users that aren’t in /etc/passwd). Originally introduced as
a patch that included a separate delivery agent daemon, the virtual mailbox
domain feature is now a standard Postfix component.

The virtual delivery agent in Postfix is based on the local delivery agent.
Unlike the local agent, the virtual delivery agent cannot access your system'’s
local user information (for example in /etc/passwd) to look up recipient
names. Instead, the virtual delivery agent relies entirely on map types that
have nothing to do with your system.

There are two reasons for preventing the virtual delivery agent from
knowing anything about system accounts:

Scalability
On Linux, using local accounts defined in /etc/passwd restricts mail serv-
ers to roughly 65,536 recipients. Solaris and *BSD are not bound to this
limitation. They have much longer UIDs. The virtual delivery agent is
not bound to these limits.

NOTE

Security
There is a much lower probability of a system compromise if usernames
and passwords aren’t required in order for local accounts to simply send
and receive mail. Also, the virtual delivery agent does not execute user-
specified shell commands or append mail to userspecified local files.

Because the virtual delivery agent knows nothing about your system, it
cannot process files such as $HOME/. forward or make use of applications such
as procmail and vacation. The virtual delivery agent has been reduced to
delivering mail to mailboxes only.

Checking Postfix for Virtual Delivery Agent Support

To use virtual mailbox domains, the master daemon must be able to run the
virtual daemon. Check your master.cf file; the default is for the daemon to
be enabled, as in the following example:

=== == = = = == == == = = ===z
service type private unpriv chroot wakeup maxproc command + args

(yes) (yes) (yes) (never) (100)

=== == = = = == == == = = ===z
smtp inet n - n - - smtpd

local unix - n - - local

virtugl unix - n n - - virtual

Make sure that the virtual daemon is not running chrooted (see the fifth column in the
preceding example).

Basic Configuration

To configure a basic virtual mailbox domain, you must make the virtual
delivery agent store all messages using the same UID and GID in a flat
hierarchy. You will need to perform the following steps:

1. Set the name of the virtual mailbox domain.

2. Set the file ownership for the virtual delivery agent.
3. Set the base directory for the domain’s mailboxes.
1

Create the recipient map.

5. Create an alias map.

A Mail Server for Multiple Domains 195

196

CAUTION

NOTE

Chapter 14

Setting the Virtual Mailbox Domain Name

First, you will need to tell Postfix that it is the final destination for one or more
virtual mailbox domains by setting the virtual_mailbox_domains parameter in
your main.cf file to a list of domains. For example, if you wanted to create a
virtual mailbox domain mailbox for example.com, you would use this setting:

virtual mailbox domains = example.com

Setting File Ownership

Although virtual mailbox domains do not require that each mailbox have a
unique user, you still need at least one user ID (UID) and group ID (GID) to
give the virtual delivery agent access to the mailboxes. To do so, you must
define ownership maps with the virtual_uid_maps and virtual_gid_maps
parameters.

Setting the User

To set the mailbox owner, you need to create a local user for the mailboxes,
if you have not already done so. To create a mailbox user named vbox with a
user ID of 1000, run this command:

useradd vuser -u 1000

By default, the mailbox owner may not have a UID lower than 100. This is a security
measure set by the virtual minimum_uid parameler, which prevents virtual from over-
writing sensitive files owned by system accounts. You can set a different boundary by

setting the virtual_minimum_uid in yourmain.cf file.

With the mailbox owner user in place, you must tell virtual to use this
UID when it writes messages to the filesystem. Set the UID with the virtual_
uid_maps parameter in your main.cf file, as in this example for a UID of 1000:

virtual_uid_maps = static:1000

Use the static option for the UID to make the virtual daemon use this UID exclusively.
You can also apply UIDs dynamically, as explained shortly in the “Advanced Configu-
ration” section.

Setting the Group

You need a local group in addition to the user that you just set. For a basic
setup, create a GID with the same number as the UID in the previous section.
Your useradd command may have already done this for you (check your /etc/
group file), but if not, use a command such as this one:

groupadd vuser -g 1000

NOTE

Now set the virtual_gid_maps parameter in your main.cf just as you did for
the virtual mailbox user:

virtual_gid_maps = static:1000

Setting the Virtual Mailbox Domain Base Directory

The virtual delivery agent needs to know where to find the mailboxes for its
recipients. Normally, it’s up to the operating system to provide environment
variables and configuration files that tell applications about default system
settings. Because the virtual delivery agent does not recognize environment
variables you have to state explicitly where to put the messages it should
deliver to the users.

Set the virtual_mailbox_base parameter in your main.cf file to specify
where to store incoming messages. Here’s an example:

virtual_mailbox_base = /var/spool/virtual_mailboxes

The full path of an individual virtual mailbox consists of the virtual_mailbox_base
value and a value in the lookup map (described in the next section). In other words, it
is $virtual_mailbox_base/$mailboxname.

After setting the virtual_mailbox_base parameter, it’s a good idea to
actually create the directory and make it accessible to the user that you
defined in the previous sections:

mkdir /var/spool/virtual_mailboxes
chown vuser:vuser /var/spool/virtual_mailboxes
chmod 700 /var/spool/virtual_mailboxes

Creating the Recipient Map

You must define virtual mailbox domain recipients in a map. For example,
you could create a file named /etc/postfix/virtual mailbox_recipients with the
fully qualified recipients on the left side and the mailbox names on the right
side. Here’s an example of how it might look:

wilma.pebble@example.com wilmapebble
betty.mcbricker@example.com bettymcbricker
fred.flintstone@example.com fredflintstone
barney.rubble@example.com barneyrubble
bamm. bamm@example. com bammbamm/

The virtual daemon prepends the value of the virtual_mailbox_base
parameter to the mailbox name to form the full mailbox file pathname. The
default format for mailboxes is mbox format, but you can specify Maildir
format by appending a slash (/) to the mailbox name, as in the preceding
entry for bamm. bamm@example. com.

A Mail Server for Multiple Domains 197

198

Chapter 14

Once you're happy with this file, you have to build an indexed version by
entering this command:

postmap hash:/etc/postfix/virtual_mailbox_recipients

Then you can tell Postfix where to find the map by setting the
virtual_mailbox_maps parameter in main.cf, as follows:

virtual _mailbox_maps = hash:/etc/postfix/virtual_mailbox_recipients

Recipient Map Limitations

For security reasons, there are a few limitations on recipient maps:

¢ Virtual mailbox domain recipients cannot use an address extension,
such as user+extension@domain.tld.

¢ The virtual daemon cannot invoke external programs as local can.

¢ Regular expression maps are allowed, but you can’t use expression
substitution (this means you can’t put $1 in the RHS).

¢ You can’t perform table lookups with the proxymap daemon.

Creating the Alias Map

You can have aliases for a virtual mailbox domain, but you have to put them
in a separate map, such as /etc/postfix/virtual_mailbox_aliases. The format
calls for the fully qualified alias name on the left side and the fully qualified
target on the right side, as in this example:

wilma@example.com wilma.pebble@example.com
pebble@example.com wilma.pebble@example.com

postmaster@example.com bamm.bamm@example.com
abuse@example.com bamm.bamm@example.com

As with other maps, you must create an indexed version with this
command:

postmap hash:/etc/postfix/virtual_mailbox_aliases

Finally, tell Postfix to use the map for aliases by setting the virtual_alias_
maps parameter in your main.cf file, like this:

virtual_alias_maps = hash:/etc/postfix/virtual_mailbox_aliases

After reloading Postfix, your mail server will accept messages for your
virtual mailbox domain recipients.

Advanced Configuration

If you need to provide mail services for many virtual mailbox domains, the
chances are that storing all messages in a single directory hierarchy will cause
trouble, because there may be two users with the same name. Furthermore,
backing up data separately becomes very complicated. To solve these problems,
you can configure virtual mailbox domains to store messages for different
domains in different directories. You also have the option of using different
user IDs (UIDs) and group IDs (GIDs).

To set up this kind of advanced configuration, you must do the following.

1. Set the names of the virtual mailbox domains.
2. Set file ownership for the virtual delivery agent.
3. Set the base directory for the mailboxes.

4. Create the recipient map.

5. Create an alias map.

6. Set the storage and access permissions.

Setting the Virtual Domain Names

As described in the earlier “Setting the Virtual Mailbox Domain Name”
section, you set the virtual mailbox domain names with the virtual_mailbox_
domains parameter. Here’s an example with two domains:

virtual_mailbox_domains = example.com, postfix-book.com

Setting File Ownership

For an advanced configuration, you need to create a UID and GID set for
each virtual recipient domain. Let’s say you want to use the user and group
name example for example.com and pfxbook for postfix-book.com. Refer back to
the “Setting File Ownership” section for details; to create the users, you
might use these commands:

useradd example -u 1001
useradd pfxbook -u 1002
groupadd example -g 1001
groupadd pfxbook -g 1002

Take note of these UIDS and GIDS; you’ll use them again soon when you
create lookup maps in the “Setting Storage and Access Permissions” section.
Setting the Base Directory for Virtual Mailbox Domains

You need to set the virtual_mailbox_base parameter to tell virtual where
it should store messages, just as in the earlier “Setting the Virtual Mailbox
Domain Base Directory” section.

A Mail Server for Multiple Domains 199

200

CAUTION

Chapter 14

Let’s use the same setting as in that section:
virtual mailbox_base = /var/spool/virtual mailboxes

However, the difference between what we’re doing here and the basic
configuration we set up earlier is that you must change the directory permis-
sions for virtual_mailbox_base. Otherwise the virtual daemon—using differ-
ent UIDs and GIDs for each user and domain when it stores a message—will
not be allowed to write to the subdirectories:

mkdir /var/spool/virtual_mailboxes
chown vuser:vuser /var/spool/virtual_mailboxes
chmod 775 /var/spool/virtual mailboxes

Now you will have to create the subdirectories (for example, example.com
and postfix-book.com) because virtual will create only the mbox or Maildir of
the recipient, not the parent directory of its domain.

mkdir example.com

chown example example.com/
chgrp example example.com/
chmod 700 example.com/

Postfix 2.0 and earlier will not create Maildir-style mailboxes in world-writable parent
directories; you will need to create Maildirs in advance.

If mail delivery fails due to some permissions problem, you will see
messages like the following in the mail log:

May 26 12:04:33 mail postfix/virtual[14196]: warning: maildir access problem
for UID/GID=1002/1002: create /var/spool/mailboxes/postfix-book.com/
patrick/tmp/1085565873.P14196.mail.example.com: Permission denied

May 26 12:04:33 mail postfix/virtual[14196]: warning: perhaps you need to
create the maildirs in advance

Creating Recipient Maps

Now you need to create a map for valid recipients in your virtual mailbox
domains. The process is the same as in the earlier “Creating the Recipient
Map” section, except that you need to prepend directories to the mailbox
names. This way, messages for separate domains go in different directories,
so that you don’t need to worry about name conflicts.

For example, you can create an /etc/postfix/virtual_mailbox_recipients
file like this:

wilma.pebble@example.com example.com/wilmapebble/
betty.mcbricker@example.com example.com/bettymcbricker/

NOTE

fred.flintstone@example.com example.com/fredflintstone/

barney.rubble@example.com example.com/barneyrubble/
bamm. bamm@example.com example.com/bammbamm/
ralf@postfix-book.com postfix-book.com/ralf/
patrick@postfix-book.com postfix-book.com/patrick/

Remember that after creating the map, you need to build an indexed
version with this command:

postmap hash:/etc/postfix/virtual_mailbox_recipients

As before, set the virtual_mailbox_maps parameter to the map in your
main.cf file.

virtual mailbox_maps = hash:/etc/postfix/virtual mailbox_recipients

This takes care of all recipients except for the alias maps, which you create
in the same way as described in the earlier “Creating the Alias Map” section.

Setting Storage and Access Permissions

You cannot define separate storage and access permissions for different
virtual mailbox domains, as was described in the earlier “Setting File
Ownership” section. Instead, you must create maps that associate mailboxes
to user IDs and group IDs.

Now you will need the UIDs and GIDs you created in the “Setting File
Ownership” section. You must assign a UID to each mailbox in a map specified
with the virtual_uid_maps parameter. For example, you could set the map name
to hash:/etc/postfix/virtual uid_map with this line in your main.cf file:

virtual uid_maps = hash:/etc/postfix/virtual uid_map

Now, put the recipients in the map by entering the full recipient address
on the left side and the UID on the right side, as in this example:

wilma.pebble@example.com 1001
betty.mcbricker@example.com 1001
fred.flintstone@example.com 1001
barney.rubble@example.com 1001
bamm.bamm@example. com 1001
ralf@postfix-book.com 1002
patrick@postfix-book.com 1002

Don’t forget to create the indexed version of the map with the postmap command. An
even shorter version would be:

@example.com 1001
@postfix-book.com 1002

A Mail Server for Multiple Domains 201

202

np

Chapter 14

The GID mapping works just like the UID mapping. Here’s a sample
map that you can use for this example in a /etc/postfix/virtual_gid_map file:

wilma.pebble@example.com 1001
betty.mcbricker@example.com 1001
fred.flintstone@example.com 1001
barney.rubble@example.com 1001
bamm. bamm@example. com 1001
ralf@postfix-book.com 1002
patrick@postfix-book.com 1002

Specify this file in your virtual_gid maps parameter as follows:

virtual_gid_maps = hash:/etc/postfix/virtual_gid map

Because the entries for virtual_gid maps in this example are exactly the same as the
ones forvirtual_uid_maps, you can skip the work of making the GID map file and just
refer to the UID map in your main.cf as follows:

virtual_gid_maps = $virtual_uid_maps

After setting up the maps and configuration file, reload Postfix to have
the virtual daemon deliver messages to subdirectories named after recipient
domains.

Generating Maps with Scripts

As you may have noticed, virtual needs at least three maps to look up
recipients, mailboxes, and owner and group permissions. You can make your
life a lot easier by having a script build all of the maps from a single source
file, such as /etc/postfix/virtual build map_source, that contains all of the
required information. For example, let’s say that the source file contains the
following lines:

wilma.pebble@example.com example.com/wilmapebble/ 1001 1001
betty.mcbricker@example.com example.com/bettymcbricker/ 1001 1001
fred.flintstone@example.com example.com/fredflintstone/ 1001 1001
barney.rubble@example.com example.com/barneyrubble/ 1001 1001
bamm. bamm@example . com example . com/bammbamm/ 1001 1001
ralf@postfix-book.com postfix-book.com/ralf/ 1002 1002
patrick@postfix-book.com postfix-book.com/patrick/ 1002 1002

The following script (let’s call it /etc/postfix/build_virtual_maps) reads
the data from the map source and creates the three target maps:

1/bin/bash
#
Build all virtual mailbox maps from one source

section: paths
SOURCE=/etc/postfix/virtual build map source
VMAP=/etc/postfix/virtual mailbox_recipients
VUID=/etc/postfix/virtual uid_map
VGID=/etc/postfix/virtual_gid_map
AWK=/usx/bin/awk

POSTMAP=/usr/sbin/postmap

section: build

build $virtual mailbox_maps

$ANK '{printf("%s %s\n",$1,$2)}' $SOURCE > $VMAP
$POSTMAP hash:$VMAP

build $virtual uid maps

$ANK '{printf("%s %s\n",$1,$3)}' $SOURCE > $VUID
$POSTMAP hash:$VUID

build $virtual gid maps

$ANK ‘{printf("%s %s\n",$1,$4)}' $SOURCE > $VGID
$POSTMAP hash:$VGID

NOTE You can download this script from the Book of Postfix website at http://www.
postfix-book.com. (You may need to change the paths at the beginning, of course.)

After running the script, all of the maps, except the source file and the
virtual alias map, should have the same date and time:

-Iw-I--r-- 1 root root 532 May 26 12:12 virtual_build_map_source
-rw-I--r-- 1 root root 251 May 26 13:21 virtual_gid map

-Yw-r--r-- 1 root root 12288 May 26 13:21 virtual _gid map.db

-rw-r--r-- 1 root root 394 May 26 13:21 virtual mailbox_recipients
-rw-r--r-- 1 root root 12288 May 26 13:21 virtual_mailbox_recipients.db
-Iw-I--r-- 1 root root 251 May 26 13:21 virtual_uid_map

-rW-r--r-- 1 root root 12288 May 26 13:21 virtual_uid_map.db

Database-Driven Virtual Mailbox Domains

If you're interested in an enterprise or an ISP MTA, you can have Postfix access
a database to get virtual mailbox domain information. This arrangement is
especially flexible, because you can delegate the user administration to other
people without giving them root access on the server. If you provide a powerful
web interface, your customers can manage their own data (add aliases, change
their SMTP AUTH, POP3, and IMAP passwords, and so on). Furthermore,
changes to data in the database show up immediately, so you don’t need to
reload Postfix every time you change data.

On the other hand, indexed maps are faster to access, and map lookups
don’t consume as many system resources as SQL queries, because you don’t
need to run a database server. Furthermore, a database-driven solution may
be more complex.

A Mail Server for Multiple Domains 203

204

NOTE

Chapter 14

If you run into performance problems with database lookups, you can set
up a dedicated database server that can be available to many Postfix servers
(and other services) on your network. Combined with load-balancing
mechanisms such as round robin and special hardware, you can build high-
performance mail services with a database.

This section shows you how to implement database-driven virtual mail-
box domains using MySQL as the database. Here’s what you need to do:

1. Check Postfix for MySQL map support.
2. Build Postfix to support MySQL maps.
3. Configure the database.

4. Test database-driven virtual mailbox domains.

Database-driven maps aren’t limited to being used in virtual mailbox domains. You
can use them in many other scenarios. Postfix also supports PostgreSQL and LDAP
queries (the PostgreSQL configuration is nearly identical to that of MySQL,; LDAP is
discussed in Chapter 19).

Checking Postfix for MySQL Map Support

Before you configure Postfix to query MySQL, you should probably verify
that your installation actually supports this type of map. Use the postconf -m
command to print the supported map types. If you have MySQL support, you
should see mysql in the output, as in this example:

postconf -m
btree
cidr
environ
hash
ldap
mysql
nis
pcre
proxy
regexp
sdbm
static
unix

If you don’t have MySQL support in your installation, you can either
install a Postfix package from your operating system distribution that
supports MySQL, or you can build it yourself manually and then install
your new version (as described in the next section).

np

Building Postfix to Support MySQL Maps

To build Postfix with MySQL table support, first locate the header files and
libraries that the Postfix build needs. To find the header file directory, use
this command:

find /usr -name 'mysql.h’
/usr/include/mysgl/mysql.h

The preceding output shows that the header files on this particular
system are in /usr/include/mysql. To find the MySQL client libraries, run this
command:

find /usr -name 'libmysqlclient.*’
/usr/1lib/mysql/libmysqlclient.so.10
/usr/1lib/mysql/libmysqlclient.s0.10.0.0
/usr/1lib/mysql/libmysqlclient.so
/usr/1ib/mysql/libmysqlclient.a

The output here shows that the libraries are in /usr/1ib/mysql.

Now that you know the correct paths, you can set the variables for the
Postfix Makefile build configuration process. For the paths in this example,
you would use the following command to configure and build Postfix:

$ make tidy

$ make makefiles CCARGS='-DHAS_MYSQL -I/usr/include/mysql’
AUXLIBS="-L/usr/1lib/mysql -lmysqlclient -1z -1m'

$ make

After the build completes and you install Postfix, verify that you have
MySQL support as described in the previous section.

Configuring the Database

When you’re ready to set up the MySQL database to hold your virtual
domain information, connect to MySQL as root and create a database.
The following command creates a database named mail:

mysql> CREATE DATABASE “mail”;

You can download the complete set of SQL statements for this section from The Book
of Postfix website at http://www.postfix-book.com. If you need to learn some-

thing about SQL statements first, A Gentle Introduction to SQL can be found at
http://sqlzoo.net.

A Mail Server for Multiple Domains 205

206

NOTE

Chapter 14

Creating a Recipient Domain Table

Create a table with a name such as virtual_mailbox_domains to hold the
domains for which Postfix will consider itself the final destination. You can
use this command:

mysql> CREATE TABLE “virtual_mailbox_domains™ (

mysql> “Id” int(10) unsigned NOT NULL auto_increment,
mysql> “domain” varchar(255) default NULL,

mysql> PRIMARY KEY ("Id),

mysql> FULLTEXT KEY “domains™ (" domain™)

mysql>) TYPE=MyISAM COMMENT='Postfix virtual aliases’;

If this command is successful, you can add your virtual domains to the
table. For example, to add example.com to the table, type this SQL command
to insert a row:

mysql> INSERT INTO virtual mailbox_domains VALUES (1, 'example.com');

Adding Users

Now it’s time to create a table where each row contains a recipient, mailbox
name, UID, and GID. You can name it virtual_users; the structure is very
similar to the columns of the /etc/postfix/virtual_build map_source file that we
used in the earlier “Generating Maps with Scripts” section.

The following table builds wpon the MySQL SMTP AUTH table described in
Chapter 18. It contains passwords and other information, so you can use it as
an authentication backend source for both SMTP authentication and for virtual
mailbox domains.

Run the following command to create the virtual_users table:

mysql> CREATE TABLE “virtual_users™ (

mysql> “id” int(11) unsigned NOT NULL auto_increment,

mysql> “username’ varchar(255) NOT NULL default '0’',

mysql> “userrealm” varchar(255) NOT NULL default 'mail.example.com’,
mysql> “userpassword™ varchar(255) NOT NULL default '1istP@ss’,
mysql> “auth® tinyint(1) default '1',

mysql> “active’ tinyint(1) default '1’,

mysql> “email” varchar(255) NOT NULL default '’,

mysql> “virtuwal _uid® smallint(5) default '1000',

mysql> “virtual_gid® smallint(5) default '1000',

mysql> “virtual _mailbox” varchar(255) default NULL,

mysql> PRIMARY KEY ("id"),

mysql> UNIQUE KEY “id* (7id"),

mysql> FULLTEXT KEY “recipient™ (“email”)

mysql>) TYPE=MyISAM COMMENT='SMTP AUTH and virtual users';

The active field is optional; you can use it to enable or disable a recipient’s
mailbox (which might be useful if a customer hasn’t paid, and you need to
disable the service, but you don’t want to lose the account configuration).

With the table in place, you need to add data for testing. Here is a
command that adds a sample row:

mysql> INSERT INTO virtual_users VALUES (5,'bamm.bamm','mail.example.com','1stP@ss’,1,1,
mysql> 'bamm.bamm@example.com',1001,1001, 'example.com/bammbamm/");
Creating a Table for Virtual Aliases
The last table that you must create is for virtual aliases. As with other alias
maps, the table rows contain the alias name and the real recipient address.
Create a table (with a name such as virtual aliases) as follows:
mysql> CREATE TABLE “virtual_aliases™ (
mysql> “Id” int(10) unsigned NOT NULL auto_increment,
mysql> “alias” varchar(255) default NULL,
mysql> “virtual_user_email” text,
mysql> PRIMARY KEY ("Id),
mysql> FULLTEXT KEY “aliases™ ("alias”, virtual_user_email”)
mysql>) TYPE=MyISAM COMMENT='Postfix virtual recipients';
As with the other tables, you should fill it with some data. Start with the
aliases that the RFCs require:
mysql> INSERT INTO virtual aliases VALUES (1, 'postmaster@example.com’,'bamm.bamm@example.com');
mysql> INSERT INTO virtual aliases VALUES (2,'abuse@example.com','bamm.bamm@example.com');
Creating a MySQL User for Postfix
Your last task in configuring the database is to create a MySQL user to query
the tables. You should limit the user’s permissions so that Postfix cannot
modify the data. The following command adds a new user named postfix
that can connect from localhost:
mysql> CONNECT mysql;
mysql> INSERT INTO user VALUES
(llocalhostl,lpostfj‘xl,lI’IYI’IYI,IYI’IYI,IYI’IYI,IYI,IYI’IYI,IYI’IYI,IYI’IYI’IYI);
mysql> UPDATE mysql.user SET password=PASSWORD("Yanggt!") WHERE user='postfix' AND
host="localhost’;
mysql> FLUSH PRIVILEGES;
You need to restrict the account to read-only (SELECT) access. Postfix
shouldn’t be able to alter or create tables. Use the GRANT command to do this:
mysql> GRANT USAGE ON *.* TO ‘postfix'@'localhost’ IDENTIFIED BY PASSWORD '2fc879714f7d3e72';
mysql> GRANT SELECT ON mail.virtual_aliases TO 'postfix'@'localhost’;
mysql> GRANT SELECT ON mail.virtual_users TO 'postfix'@'localhost’;
mysql> GRANT SELECT ON mail.virtual_mailbox_domains TO 'postfix'@'localhost’;

A Mail Server for Multiple Domains 207

208

Chapter 14

Configuring Postfix to Use the Database

When configuring a SQL query system for Postfix, you must set the following
parameters in a special file. Postfix substitutes these parameters into a series
of SQL statements that culminates with a SELECT statement:

user
The username that connects to the database.
password
The password of the database user. It must be in plaintext form.
hosts

Alist of one or more FQDN hostnames or IP addresses of SQL servers. If
Postfix fails when trying to contact the first host in the list, it will try the
other hosts in random order. If no server is available, Postfix defers the
job until a server is online.
When you use localhost as a server, Postfix automatically uses a
Unix domain socket instead of a TCP/UDP connection.
dbname
The database to connect to.
table
The name of the table that contains the virtual domain data.
select_field

The field that contains a result from the query (for example, a user’s
email address).

where_field

The field to match when querying the database (for example, an email
alias).

additional_conditions
Additional conditions on the query; for example, you may want to query

only user accounts that are currently active. This parameter is optional.

Table 14-1 illustrates how the fields of indexed maps correspond to
database parameters. You can use it when creating a SELECT statement if
you're not sure of the table fields you need to specify.

Table 14-1: How Fields of Indexed Maps Correspond to Database Parameters

Map Type LHS RHS Conditions
indexed map left column right column -
SQL database table where_field select_field additional_conditions

Protecting the Postfix SQL Configuration

Postfix currently supports two ways of configuring MySQL (and PostgreSQL)
SELECT statements.

The first requires that you write Postfix’s SQL server username and
password in your main.cf file. Because this is not very safe, it will not be
covered in this book (main.cf is normally world-readable, so every user on
your system would be able to get these credentials). If you insist on using this
method, see MYSQL_README in the Postfix readme directory for more information,
but be aware that future versions of Postfix will not support this style.

The second method is preferable because it handles security far better.
The SELECT statements (including the username and password) go in separate
files outside of main.cf. Furthermore, you will put them into a subdirectory
accessible only to Postfix and root (you’ll specify the location of the files in
main.cf).

To set up the file structure, first create a directory, such as /etc/postfix/
sql, and set appropriate permissions:

mkdir /etc/postfix/sql

chown postfix /etc/postfix/sql
chgrp root /etc/postfix/sql

chmod 500 /etc/postfix/sql

Now you're ready to add files here, where they are safe from (most)
prying eyes.

Constructing the Recipient Domains Query

The first file you need to add will define the parameters for a query that
retrieves the domains for which Postfix considers itself a final destination.
Add the following configuration to a file such as /etc/postfix/sql/virtual
mailbox_domains.cf:

user = postfix

password = Yanggt!

dbname = mail

table = virtual mailbox_domains
select_field = domain
where_field = domain

hosts = localhost

As mentioned earlier, these parameters correspond to values in a SQL
SELECT statement. The statement for the preceding file would be as follows, with

domainpart being the domain part of the incoming recipient email address:

mysql> SELECT domain FROM virtual_mailbox_domains WHERE domain = 'domainpart’

A Mail Server for Multiple Domains 209

210

NOTE

Chapter 14

It may seem a little strange to read the domain from the table when you
already know it, but the point of this query is to see whether there are
actually any rows in the database that match the domain part. If there are
none, the query fails, and Postfix knows that it is not the final destination for
the domain.

You do not need to enter any of these SELECT statements (Postfix constructs them auto-
matically when accessing the database), but it helps to know them when tracking down
database problems at the MySQL prompt.

Now you need to tell Postfix (in main.cf) to use MySQL and where to find
the parameters for virtual_mailbox_domains. The specification looks much like
a regular indexed map, but with the hash keyword replaced with mysql:

virtual mailbox_domains = mysql:/etc/postfix/sql/virtual mailbox_domains.cf

Creating the User ID and Group ID Queries

Next you need to add the parameters for the UID and GID queries
(remember that these define the virtual mailbox file owner). Add the
following lines to a file named /etc/postfix/sql/virtual_uid_maps.cf:

user = postfix

password = Yanggt!

dbname = mail

table = virtual_users
select_field = virtual_uid
where_field = email

hosts = localhost

The SELECT statement that corresponds to this file looks like the following
(where recipient is the recipient address of an incoming message):

mysql> SELECT virtual_uid FROM virtual users WHERE email = 'recipient'

Use the virtual_uid_maps parameter in main.cf to tell Postfix where it can
find the SQL query to lookup the UID:

virtual uid maps = mysql:/etc/postfix/sql/virtual uid maps.cf

Creating a SQL lookup for the GID is similar to the UID procedure. Use
a filename such as /etc/postfix/sql/virtual_gid maps.cf to create the SQL
SELECT statement:

user = postfix
password = Yanggt!
dbname = mail

table = virtual_users
select field = virtual gid
where _field = email

hosts = localhost

The corresponding SQL SELECT statement for this file is as follows:
mysql> SELECT virtual_gid FROM virtual_users WHERE email = 'recipient’

Then tell Postfix where to lookup the GID. Point the virtual_gid_maps
parameter in main.cf to the SQL query file:

virtual_gid _maps = mysql:/etc/postfix/sql/virtual_gid_maps.cf

Creating the Recipient Query

Perhaps the most important query is the one that retrieves the recipient
mailbox name when given a recipient address. Add the following query
parameters to the /etc/postfix/sql/virtual mailbox_recipients.cf file:

user = postfix

password = Yanggt!

dbname = mail

table = virtual_users

select_field = virtual_mailbox
where_field = email
additional_conditions = and active = '1'
hosts = localhost

Notice the additional_conditions parameter here. The parameters in this
file correspond to the following SELECT statement:

mysql> SELECT virtual_mailbox FROM virtual_users WHERE email = 'recipient' AND active = '1'

The virtual_mailbox_maps parameter tells Postfix where to look for virtual
mailbox recipients and their mailboxes. In main.cf, add this line:

virtual mailbox maps = mysql:/etc/postfix/sql/virtual mailbox recipients.cf

Creating the Aliases Query
Finally, it’s time to specify the parameters for the virtual aliases query. Put

the following lines in a file such as /etc/postfix/sql/virtual_alias_maps.cf:

user = postfix
password = Yanggt!
dbname = mail

A Mail Server for Multiple Domains m

212

Chapter 14

table = virtual_aliases

select field = virtual user email
where field = alias

hosts = localhost

This is the SELECT statement that corresponds to the preceding file:
mysql> SELECT virtual_user_email FROM virtual_aliases WHERE alias = 'recipient'

To wrap it up, tell Postfix where to find the aliases query configuration
file with the virtual_alias_maps parameter in main.cf:

virtual_alias_maps = mysql:/etc/postfix/sql/virtual_alias_maps.cf

Reload Postfix to put all the changes in main.cf into effect, and start
testing.

Testing Database-Driven Virtval Mailbox Domains

Tracking down a problem can become quite tedious if you can’t tell whether
the problem lies with Postfix or MySQL. That’s why you should test MySQL
and Postfix separately. If the MySQL tests succeed, then you know the
problem lies with the Postfix configuration.

Testing MySQL

The very first thing you should test is whether the username and password
that you supplied in the query configuration files are allowed to access
MySQL and make queries.

Then try to connect to the database that holds your virtual mailbox
domain data. Both tests will be shown in the following example:

mysql -u postfix -p -h localhost -A
Upon successful login, you will see this output:

Welcome to the MySOL monitor. Commands end with ; or \g.
Your MySQL connection id is 144 to server version: 3.23.58
Type 'help;' or '\h' for help. Type '\c' to clear the buffer.
mysql>

Use the CONNECT statement to access the mail database, and you should get
a confirmation that looks like this:

mysql> CONNECT mail;
Connection id: 145
Current database: mail
mysql>

If you can’t connect to the server, check the username and password that
you specified to MySQL in the earlier “Creating a MySQL User for Postfix”
section. On the other hand, if you're having trouble connecting to the mail
database, check the GRANT statements (in the same section).

Querying Recipient Domains

Now it’s time to run a SELECT statement that will verify that your Postfix
MySQL user can look up virtual mailbox domains in the virtual_mailbox_
domains table. Enter a command such as this:

mysql> SELECT domain FROM virtual _mailbox_domains WHERE domain = 'example.com';
If this is successful, you should see one row of output that contains the

query input (recall from the “Constructing the Recipient Domains Query”
section that this is the correct behavior):

Fomm e ————— +
| domain |
Fommmmmm s +
| example.com |
Fommmmmemaes +

1 row in set (0.00 sec)

If you don’t get a match, check whether the domain exists in your table.
One easy way to check this is to retrieve all rows from the table by omitting
the WHERE clause:

mysql> SELECT domain FROM virtual mailbox_domains;

Querying Virtual Mailbox UIDs and GIDs

Next you verify that your MySQL user is able to retrieve a known recipient
address. Try to the retrieve the virtual uid field from a known recipient
address in your virtual_users table, as in this successful example, which shows
the mapping from bamm.bamm@example.com to the virtual mailbox UID 1001:

mysql> SELECT virtual_uid FROM virtual_users WHERE email =
'bamm.bamm@example.com';

Hommmmmmeeeees +
| virtual uid |
dmmmmmmmmmmam +
| 1001 |
Hmmm e +

1 row in set (0.00 sec)
Do the same for the GID:

mysql> SELECT virtual_gid FROM virtual_users WHERE email =
' bamm. bamm@example.com' ;

A Mail Server for Multiple Domains 213

214

Chapter 14

1 row in set (0.00 sec)

Querying Recipient Mailboxes

Test whether the Postfix MySQL user can look up a mailbox for a given
recipient. Recall that this is the virtual_mailbox in the virtual_users table.
Here’s an example that maps bamm.banm@example.com to the Maildir-style
mailbox example.com/bammbamm/:

mysql> SELECT virtual_mailbox FROM virtual_users WHERE email =
' bamm . bamm@example.com' ;

femmmeceesessesasseaaaas +
| virtual mailbox |
Hommmmm e +
| example.com/bammbamm/ |
e +

1 row in set (0.00 sec)

Querying Aliases
Your final database check is for aliases. For a known alias, retrieve the

recipient address (the virtual_user_email field in the virtual_aliases table).
Here’s an example:

mysql> SELECT virtual_user_email FROM virtual_aliases WHERE alias =
'postmaster@example.com’;

femmssscssssssscssesaaas +
| virtual user email |
4mmmmmmmmmmmmmeemaaaaa +
| bamm.bamm@example.com |
fmmmmmmmmmmmmmmmmmm——aaa +

1 row in set (0.00 sec)

Testing Postfix

You can test Postfix MySQL lookups without sending any test email messages.
The postmap command can perform any kind of query, including those in

a MySQL table. Here’s the general format of a postmap command that does a
MySQL query:

postmap -q "value" mysql:path-to-parameter-file

For example, here’s how to tell Postfix to query MySQL for a known
virtual mailbox domain:

postmap -q "example.com" mysql:/etc/postfix/sql/virtual_mailbox_domains.cf

If this is successful, the data matching the query should be displayed on
the command line:

example.com

If no result is being returned, check whether that virtual domain name
exists in your table (see the earlier “Querying Recipient Domains” section).
If that test was successful, verify the username and password information in
your virtual mailbox_domains.cf file.

Querying UIDs and GIDs

To proceed with testing, tell Postfix to query MySQL for the UID and GID of
a known virtual mailbox recipient:

postmap -q "bamm.bamm@example.com" mysql:/etc/postfix/sql/virtual_uid_maps.cf
1001
postmap -q "bamm.bamm@example.com" mysql:/etc/postfix/sql/virtual_gid_maps.cf
1001

Querying Recipients

Next, verify Postfix can query for known recipients. The postmap command
that corresponds to the SELECT statement in the earlier “Querying Recipient
Mailboxes” section is as follows:

postmap -q "bamm.bamm@example.com" mysql:/etc/postfix/sql/virtual_mailbox_recipients.cf
example.com/bammbamm/

Querying Aliases

Your final test is to tell Postfix to query MySQL for the virtual user email
address of a known alias. A successful query looks like this:

bamm. bamm@example.com

A Mail Server for Multiple Domains 215

UNDERSTANDING SMTP
AUTHENTICATION

W T

SMTP authentication is a way of

-
D
L\
identifying mail clients independent of

l their IP addresses, which makes it possible for

a server to relay messages for mail clients with IP
addresses that the server does not trust. This chapter is
a primer on SMTP authentication (SMTP AUTH). Not
only will you learn about SMTP authentication and its
advantages over other approaches, but you will also see
how to install and configure Cyrus SASL, a package
required for SMTP authentication support in Postfix.

218

The Architecture and Configuration of Cyrus SASL

Chapter 15

In the early days, SMTP servers would forward mail from any client to any
destination. When spam became a problem, MTAs had to be extended with
the ability to only accept mail forwarding requests from specific clients. MTA
implementors decided to identify these specific clients by their IP address,
and then administrators had to configure their systems to reject untrusted
clients (see Figure 15-1).

Today mail-relay abuse attempts are still a daily nuisance, and adminis-
trators spent lots of time fortifying their servers using further restrictions
(see Chapter 8). Still, basing relay access on an IP address is difficult in the
case of the extremely large and distributed networks in use today, and it is
completely unworkable for mobile users.

LAN

i

Trusted p
IP address- Mail server

Mail client
Mail server

Figure 15-1: Modern mail servers reject relaying from untrusted IP addresses

i
|
|
Mobile users (which are defined in RFC 2977) need to access their own
domain’s resources regardless of their current location on the Internet.
Unfortunately, mobile users almost never use the same IP address, and
furthermore, the mobile user and postmaster will never know their IP

addresses in advance, rendering rules based on static IP addresses useless.
There are several ways of allowing relay access to mobile users:

¢ SMTP-after-POP and SMTP-after-IMAP
¢ SMTP authentication

¢ Certificate-based relaying

¢ Virtual private networks (VPNs)

The SMTP-after-POP or SMTP-after-IMAP method (see Figure 15-2)
delegates the problem of identification to a POP or IMAP server.

These are the basic steps in the SMTP-after-POP or SMTP-after-IMAP
method:

The mail client authenticates to a POP or IMAP server.

2. After successful authentication, the POP or IMAP server writes the mail
client’s IP address into a database shared with the mail server. The IP
address stays in the database for a limited amount of time.

3. The mail client attempts to relay a message through the SMTP server.

4. The SMTP server looks up the mail client’s IP address in the database.
If the IP address is in the database, the server allows relaying.

LAN

Mail client

)] o Mail client
IP address-»| o
Mail server

Figure 15-2: SMTP-after-POP as authentication for relaying
SMTP authentication solves the problem at its root (see Figure 15-3).
These are the basic steps in the SMTP AUTH method:

1. The SMTP server offers SMTP AUTH to a mail client.
2. The client passes its credentials to the server.

3. The server verifies the credentials and permits relaying if they are valid.

LAN

Mail client IP address =] Mail server SMT Mail client

Figure 15-3: SMTP AUTH as authentication for relaying

Certificate-based relaying, covered in Chapter 18, is based upon the
exchange and validation of TLS client certificates (see Figure 15-4).
These are the basic steps in certificate-based relaying:

The SMTP server offers a TLS connection to the mail client.
2. The client sends its certificate to the server.

3. The server verifies the certificate and permits the client to relay if the
certificate is among those that the server recognizes.

Understanding SMTP Authentication 219

220

Chapter 15

LAN

.0

Mail client =355

Encrypted transport layer %

Private certificate

Relay

Figure 15-4: Client certificate as authentication for relaying

Virtual private networks (VPNs) give clients access to a mail server by
setting up a secure virtual network running on top of the regular Internet. In
a VPN, administrators have control over IP addresses, so you can use relaying
based on IP address. Because the VPN configuration has nothing to do with
the SMTP server configuration, it is not covered in this book. These are the
basic steps in using a VPN:

1. The mail client’s computer connects to a VPN.

2. The SMTP server allows the client to relay based on the client’s IP
address in the virtual network.

Which Approach Is Best?

Certificate-based relaying with TLS is great, because it provides a high level
of security, but many mail clients do not yet support it. In addition, the
overhead of managing certificates on the clients and server is not trivial.
These two factors constitute a substantial effort for a company-wide or ISP-
wide rollout. If you can’t yet use certificates to relay, your choices boil down
to SMTP-after-POP, SMTP AUTH, and VPNs.

From a system architect’s point of view, SMTP-after-POP is far less than
ideal, because the solution is not even within the server and protocol where
the problem lies. Instead, another server (a POP or IMAP server), which is at
least as complex as an SMTP server, provides a stopgap solution. This
complicates matters, because the two servers must communicate, and
because the servers were almost certainly developed by different people
there is a high risk of incompatibility, especially as new releases appear.

The design of SMTP-after-POP isn’t its only drawback. It actually doesn’t
provide very good security because of its IP address-based decision mecha-
nism. It’s not difficult to spoof an IP address—an attacker can discover the IP

address of a mail client that has just been granted permission to relay for a
certain time slot and spoof that IP address until the time has passed. This
kind of abuse is not possible when the client has to authenticate for every
new message that it wants to send.

A VPN-based system is very easy to set up if you already have a VPN, but
setting up a VPN just for a mail server is a tremendous amount of effort. In
addition, a VPN requires ongoing maintenance because each new mobile
user needs VPN software.

If you want something simple, independent, and secure, SMTP AUTH is
probably for you.

SASL: The Simple Authentication and Security Layer

NOTE

Postfix implements SMTP authentication with the help of SASL (Simple
Authentication and Security Layer). SASL is an authentication framework
described in RFC 2222, and understanding how it works is critical to
understanding SMTP authentication as a whole. There are several SASL
implementations, and Postfix uses the Cyrus-SASL libraries derived from the
original SASL implementation in Project Cyrus.

Project Cyrus is the name of Carnegie Mellon University’s project to build a new cam-
pus mail system. See http://asg.web.cmu.edu/cyrus for more information.

SASL consists of three layers that you must configure. Figure 15-5 shows
the three layers: the authentication interface, the mechanism, and the
method.

In an application that uses the Cyrus SASL framework, the authenti-
cation process requires the following steps:

1. An application supporting SASL (such as the Postfix smtpd daemon)
listens for network connections.

2. A client connects and initiates authentication in these four substeps:

a. The client chooses an SMTP AUTH mechanism.

b. The client prepares to transmit its credentials according to the
requirements of the mechanism.

c¢. The client tells the server which mechanism it has chosen.
d. The client transmits the credentials.

3. The application stores the information about the chosen mechanism
and the credentials.

4. The application hands the information over to a mechanism driver,
which passes it along to the password-verification service.

5. The password-verification service accesses an authentication backend,

such as /etc/shadow. The backend tries to match the client’s credentials
with one of its entries.

Understanding SMTP Authentication m

222

Chapter 15

Authentication interface

Mechanism

Figure 15-5: The SASL layers

6. The password-verification service hands the result from the backend to
smtpd.

7. smtpd takes action based on the result. For example, it can let authenti-
cated users relay mail.

The following sections explain Cyrus SASL in more detail. You will learn
all about the SASL authentication interface, methods, mechanisms, and
authentication backends, and about how to prepare Cyrus SASL and Postfix
to offer server-side SMTP AUTH.

Avthentication Interface

The purpose of an authentication interface is to tell a client that authen-
tication is available and which authentication mechanisms may be used.
Many services, to name only LDAP or SMTP, may require authentication, but
they differ in their client-server protocol. That's why SASL has no authen-
tication interface of its own. Instead, it leaves it to the specific service and its
protocol to integrate how the capability of authentication is brought to the
attention of the client.

For email, the place where client and server meet, is the SMTP dialog.
The ESMTP protocol integrates authentication into the dialog by adding it
to the list of the mail server’s capabilities. You can see if a mail server offers
SMTP AUTH functionality by connecting to the server and using the EHLO
greeting, like this:

$ telnet mail.example.com 25

220 mail.example.com ESMTP Postfix
EHLO client.example.com
250-mail.example.com
250-PIPELINING

250-SIZE 20480000

250-VRFY

250-ETRN

CAUTION

mnpP

CAUTION

250-AUTH PLAIN LOGIN
250-AUTH=PLAIN LOGIN
250-XVERP

250 8BITMIME

QUIT

221 Bye

The boldface-italic lines in the preceding output indicate SMTP
authentication support with the PLAIN and LOGIN authentication
mechanisms. The second line (with the equal sign) is present for broken
mail clients that do not follow the final SASL specification.

The application interface is configured within the application that offers SMTP
AUTH. In Postfix, that’s the smtpd daemon, you 'll see how to configure the interface in
Chapter 16.

SMTP AUTH Mechanisms

SMTP AUTH mechanisms, such as PLAIN and LOGIN, define the
verification strategy used during authentication. The mechanisms that the
server offers show up in the application interface; in this case, that’s the
SMTP dialog. When initiating authentication, the client chooses a
mechanism, transmits its choice to the server, and then transmits its
credentials.

Cyrus SASL offers a wide variety of SASL. mechanisms that differ in the
way they transmit credentials and in the level of security they provide. A few
of them are nonstandard and are designed for specific clients. You don’t
have to use all of the mechanisms available to you; you can configure Postfix
to offer only a limited range of Cyrus SASL mechanisms.

In practice, it is best to use PLAIN, LOGIN, and CRAM-MD5 in an environment
where you need to support Windows, Mac OS, and Unix clients.

Here are the mechanisms:

ANONYMOUS
The ANONYMOUS mechanism (defined in RFC 2245) was created to
permit anonymous access to mail services. To use this mechanism, all a
mail client needs to do is send any string to the server, and the server will
then allow the client to relay.

Do not use the ANONYMOUS mechanism with Postfix unless you want your mail
server to become an open relay. Spammers know how to abuse this mechanism.

CRAM-MD5, DIGEST-MD5
The Cyrus SASL library supports two “shared secret” mechanisms:
CRAM-MD5 and its successor, DIGEST-MD5. These methods rely
on the client and the server sharing a secret, usually a password.
The server generates a challenge based on the secret, and the client

Understanding SMTP Authentication 223

224

NOTE

CAUTION

Chapter 15

responds, proving that it knows the shared secret. This is much more
secure than simply sending an unencrypted password over a network,
but the server still needs to store the secret.

EXTERNAL
The EXTERNAL mechanism allows you to bind TLS/SSL credentials
to SASL. In particular, the EXTERNAL mechanism allows you to extract
some form of username from the certificate used during TLS/SSL
negotiation.

GSSAPI, KERBEROS_V4
The Cyrus SASL library comes with two mechanisms that make use of the
Kerberos authentication system: KERBEROS_V4, which should be able
to use any Kerberos v4 implementation, and GSSAPI (tested against MIT
Kerberos vb and Heimdal Kerberos v5). Because these mechanisms make
use of the Kerberos infrastructure, they have no password database.

Unfortunately, KERBEROS_V4 has some securily problems. Use GSSAPI instead.

NTLM
The NTLM mechanism is a nonstandard, undocumented mechanism
developed by Microsoft. The SASL distribution includes it for sites that
need to interoperate with Microsoft clients (such as Outlook) and serv-
ers (such as Exchange).

oTP
The one-time pad (OTP) mechanism is similar to CRAM-MD5 and
DIGEST-MD?5 in that it uses a shared secret and a challenge/response
exchange. However, OTP is considered to be more secure than the other
shared secret mechanisms because the secret is used to generate and
store a sequence of one-time (single-use) passwords that prevent replay
attacks, so you don’t need to store secrets on the server.

PLAIN, LOGIN
Credentials that are sent using PLAIN as the mechanism are transmitted
as base64-encoded plaintext. This mechanism is simple, and most mail
clients implement it, but base64-encoded strings can be decoded easily.
LOGIN is the same as PLAIN, but it is used for mail clients (such as Out-
look Express) that do not follow the RFC.

The fact that credentials are sent in plaintext across the network creates a security risk.
Anyone running a sniffer, such as snort or tchdump, can read the secrets. You can
overcome this problem by using TLS in combination with plaintext SMTP authentica-
tion. In particular, you can tell Postfix to offer plaintext mechanisms only after a TLS
session has been established (see Chapter 18).

SRP
SRP combines the safety of shared secret authentication with the single-
use feature of OTP. It is based on public key cryptography and relies on
passwords (not certificates) during authentication.

CAUTION

Avuthentication Methods (Password-Verification Services)

Authentication methods (also known as password-verification services) handle
the mechanisms, taking care of the communication between the application
that offers SMTP authentication and the backend that stores the credentials.

Cyrus SASL offers two password verification services: saslauthd and
auxprop. The two services differ in the mechanisms they can offer and in the
backends they can connect to. The application that offers authentication
through its interface must choose which password-verification service to use.
(You’ll see the configuration later in the “Installing and Configuring Cyrus
SASL” section.) Here is an overview of the services:

saslauthd
saslauthd is a stand-alone daemon that may be run with superuser privi-
leges. It may connect to many kinds of authentication backends, but
especially those that require superuser privileges, such as /etc/shadow.
saslauthd is limited to the plaintext mechanisms (PLAIN and LOGIN).
auxprop
auxprop is a catchall password-verification service for a number of auxil-
iary plug-ins. Each plug-in is specialized for one distinct type of authenti-
cation backend, such as sasldb2 and SQL servers.

The auxprop plug-ins connect to the authentication backend with the privileges of the
application that provides the authentication. In Postfix, the application is smtpd,
which runs with the fewest privileges required.

Versions of Cyrus SASL prior to 2.X allowed access to /etc/shadow using auxprop.
This required increasing the privileges of the daemon offering SMTP AUTH and
defeated the Postfix security architecture. You are strongly discouraged from using a
backend that forces you to increase the application privileges.

Avthentication Backends

As a final step, Cyrus SASL requires one or more authentication backends
to verify the credentials provided by the client. The password-verification
service checks whether the credentials match what is stored in the authen-
tication backend. The official list of authentication backends supported by
Cyrus SASL includes the following:

imap
An IMAP server can verify the credentials.

kerberos
Cyrus SASL can check Kerberos tickets.
Idap
Cyrus SASL can read credentials from an OpenLDAP server.
pam
Cyrus SASL can read from any modules that you make available through
PAM (Pluggable Authentication Modules).

Understanding SMTP Authentication 225

226

passwd/shadow
Cyrus SASL can read from the system user databases
(/etc/passwd and possibly /etc/shadow).

sasldb2
Cyrus SASL has its own user database named sasldb2. This database is
required for the Cyrus IMAP server, but you don’t need an IMAP server
to use it with SMTP authentication.

sql
Cyrus SASL can access user data on SQL servers. The currently sup-
ported servers are MySQL and PostgreSQL.

Planning Server-Side SMTP Authentication

NOTE

Chapter 15

If you want to support SMTP authentication on your mail server, you need
only perform two steps:

1. Determine the clients that will use SMTP AUTH and the mechanisms
these clients support.

2. Define the authentication backend that you wish to use, and derive the
appropriate password-verification service.

Finding Clients and Their Supported Mechanisms

One tenet of computer security is that you cannot attack a service that
does not exist. Therefore, you should consider configuring Postfix for only
the mechanisms that your users need. On a small network where you have
good control over the mail clients in use, you can very effectively limit
mechanisms. Table 15-1 is a simplified version of the SASL client reference
(http://www.melnikov.ca/mel/devel/SASL_ClientRef.html) by Alexey Melnikov,
and it lists the mechanisms supported by various mail clients. It provides a
fairly comprehensive overview of the POP, IMAP, ACAP, and LDAP AUTH
capabilities of mail clients.

However, if you need to support as many clients as possible, offer at least
the PLAIN, LOGIN, and CRAM-MD5 mechanisms. Most mail clients support
these.

You will probably notice that there are fewer mechanisms listed in Table 15-1 than in
the SASL client reference. There are so many mechanisms that it was necessary to
abridge the SASL client reference, but those listed in Table 15-1 will give you the most
mileage in heterogeneous I'T environments.

After determining the mechanisms that you need to support the mail
clients, you need to choose the appropriate authentication backend.

Table 15-1: Mechanisms of SMTP AUTH-Capable Clients

3

o a a - < a

s 3 % 3 g 8 :

§ 3 28 B 3486 3% % &
Client $ 823 X8 & ¢cE& 3§ ¥
AKmail no yes no noe N0 nNo nNO nNo no no no
Bat! (SecureBatl) no yes Yyes no no no yes no yes no no
Control Data’s no yes no no nNno nNo nNo no yes no yes
IMAPSP
Eudora Pro 4.3 no yes no ne no no yes no yes no no
and later
fetchmail 5.0.3 no no no no no no no ne noe noe no
Forte Agent no no no no no nNno NG No no no no
Gnus no yes no no no no yes no no no no
JavaMail no no no no no no yes no yes no no
MH UCI 6.8.3 3 no no no N0 N no NG No no no
Mozilla 1.0 no yes no yes no nNo No no yes no no
Mulberry v3 no yes yes no yes no yes yes yes no no
mutt 1.2.5i nfa' nfa nfa nfa nfa nfa nf/a nfa n/a nfa nfa
Nestcape no no no yes no no nNo no yes no no
Messenger 4.51+
nmh 1.0.4 —2 no no no no no no no no no no
Novell Evolution no yes yes no no yes no yes yes no no
Orangsoft no yes no no no no yes no yes no no
Winbiff > 2.30
Outlook Express no no no no no no yes Yyes no no no
>4.0%
Outloock > 983 no no no no no no yes Yyes no no no
Paladin no yes no no no nO no ho no no no
PalmOS Eudora no yes no nNo no nNnO nNO no no no no
Pegasus Mail no yes no no no no yes no no no no
3.12
Pine 4.33 and no yes no no yes yes yes no yes no no
later
PMMail no no no no no nNno nO ne nNo No no
Sylpheed no yes yes no no no Yyes nho no no nho
Wanderlust yes yes yes no no yes Yyes no no yes no

! Does not support SMTP directly; relies on a local MTA.
? See the CMU SASL library.
3 Supports draft 10 of SMTP AUTH spec (i.e., "AUTH=" but not "AUTH ").

Understanding SMTP Authentication 227

228

Chapter 15

Defining the Avthentication Backend and Password-Verification Service

An easy but not terribly secure place to get user credentials is your system’s
local user database, /etc/passwd. This authentication backend already exists,
and unless you are an ISP, you probably have created accounts for all mail
users.

Unfortunately, too many administrators create user accounts that permit
shell access. Anyone who gains access to the usernames and passwords used
in an SMTP AUTH session could easily gain shell access to your server (and
as a result, would likely also gain superuser access, because it is much easier
to do this when you already have a shell account). This alone could be reason
enough to choose an authentication backend that has nothing to do with
your system users.

Theoretically, the ideal authentication backend has no relation to system
users, especially if you use a plaintext mechanism, because the consequences
of compromising credentials used only for mail relaying are not very serious
compared to a system break-in. You can use a self-contained database, such as
sasldb, an SQL server, or even an LDAP server. Tables 15-2 and 15-3 identify
the mechanisms you can use for each type of authentication backend. Notice
that your choice of backend also determines which password-verification
service you must use.

Table 15-2: Authentication Backends and Mechanisms Compatible with the
saslauthd Password-Verification Service

Authentication CRAM- DIGEST-

Backend PLAIN LOGIN une MD5 OTP NTLM
getpwent (regular system vyes yes no no no no
users)

kerberos yes yes no no no no
pam yes yes no no no no
rimap (remotfe IMAP yes yes no no no no
server)

shadow yes yes no no no no
Idap yes yes no no no no

Table 15-3: Authentication Backends and Mechanisms Compatible with the
auxprop Password-Verification Service

Avuthentication CRAM- DIGEST-

Backend PLAIN LOGIN MD5 MD5 OTP NTLM
sasldb2 yes yes yes yes yes yes

sql yes yes yes yes yes yes

After deciding on an authentication backend, you're ready to configure
Cyrus SASL for smtpd.

Installing and Configuring Cyrus SASL

CAUTION

Postfix requires Cyrus SASL to provide SMTP AUTH functionality to mail
clients or to use it by itself when a remote mail server offers SMTP AUTH.

If you just need to configure the Postfix smtp client to authenticate with
a remote server, all you need to do is install Cyrus SASL and proceed to
Chapter 16.

However, if you want Postfix, acting as an MTA, to offer SMTP AUTH
to remote mail clients, you need to install and configure Cyrus SASL. In
addition, Postfix needs to be told how to interact with Cyrus SASL when you
want to use server-side SMTP AUTH. In all, you need to do the following:

1. Install Cyrus SASL.
2. Create the Postfix application configuration file.
3. Configure logging and the log level.
. Set the password-verification service.
5. Select SMTP AUTH mechanisms.
6. Configure saslauthd or auxprop.

7. Test authentication.

Installing Cyrus SASL

If your system doesn’t come with Cyrus SASL preinstalled or as a package,
you need to download the Cyrus SASL library from the Download Cyrus
Software web page, http://asg.web.cmu.edu/cyrus/download.

The following sections assume that you're using at least Cyrus SASL 2.1.17, but it’s
only natural that a later version will be available when you read this. If you want to
gel version 2.1.17, you can get it from the CVS repository, http://asqg.web.cmu. edu/
cyrus/download/anoncvs.html.

After unpacking the software, change into the Cyrus SASL SOURCE
directory. If you're using a version of SASL that you got from CVS, you
need to run sh ./SMakefile to build the configure script.

Run the following command to configure Cyrus SASL for all of the
backends described in the rest of this chapter:

./configure \
--with-plugindir=/usr/lib/sasl2 \
--disable-java \

--disable-krbg \

--with-dblib=berkeley \
--with-saslauthd=/var/state/saslauthd \
--without-pwcheck \
--with-devrandom=/dev/urandom \
--enable-cram \

--enable-digest \

--enable-plain \

Understanding SMTP Authentication 229

230

NOTE

NOTE

Chapter 15

--enable-login \
--disable-otp \
--enable-sql \
--with-ldap=/usr \
--with-mysql=/usr \
--with-pgsql=/usr/1lib/pgsql

Cyrus SASL has many more configuration options. Run ./configure --help in the
source directory to find out what Cyrus SASL supports. However, if you don’t think you
need all of the backends, you can change the options.

After the configuration script creates the Makefile, you can run make to
build Cyrus SASL, then make install (as root) to install it.

Next you will have to create a symbolic link. The installation process puts
the SASL libraries in /usr/local/lib/sas12 by default, but the configuration
parameters set in the configure script cause Cyrus SASL to search for the
libraries in /usr/lib/sasl2. Create the link like this:

1n -s /usr/local/lib/sasl2 /usr/lib/sasl2

Finally, see if the syslogd daemon is set up to log Cyrus SASL messages.
Cyrus SASL logs to the syslog auth facility, so if you don’t have anything that
catches this facility already, you should add the following line to your
syslog.conf file and restart your syslogd:

auth.* /var/log/auth

Creating the Postfix Application Configuration File

Every application that offers SASL services must be told how to use the SASL
libraries. Cyrus SASL has one configuration file for each application, rather
than one large global configuration file. This makes it possible to define
different configurations for different applications. The application config-
uration file for Postfix is named smtpd.conf, because by default the Postfix
application that offers SASL services is the smtpd daemon. The file is located
in /usr/lib/sas12 by default.

Debian users must put smtpd. conf in /etc/postfix/sasl to make SMTP AUTH work.

Some operating systems come with a smtpd.conf containing a few default
settings; check for the file beforehand. If the file does not exist, create it as
root with the following commands:

touch /usx/lib/sasl2/smtpd.conf
chmod 644 /usr/lib/sasl2/smtpd.conf

The preceding commands won’t harm a preexisting configuration file.
Once you have created the configuration file, you are ready to configure how
Postfix will use the SASL libraries.

CAUTION

The Cyrus configuration file syntax is different from that of Postfix. A parameter and
its value must be on a single line. In Cyrus, every parameter ends with a colon, and a
space separates the parameler from its value.

Configuring Logging and the Log Level

The first parameter in the /usr/lib/sas12/smtpd.conf file that you should
configure is the log_level parameter. The possible values are listed in
Table 15-4.

Table 15-4: Log Level Values for Cyrus SASL

log_level Value Description

No logging

Log unusual errors; this is the default
Log all authentication failures

Log nonfatal warnings

More verbose than 3

More verbose than 4

Log traces of internal protocols

N O kR W N = O

Log fraces of internal protocols, including passwords

While you configure and test Cyrus SASL, you should set the log level at
least to 3. Here’s how to set it in the smtpd.conf file:

Global parameters
log level: 3

This file will grow as you proceed through the following sections.

Setting the Password-Verification Service

The next step is to tell Postfix which password-verification service to use for
authenticating users. At this point, you should make a clear decision between
saslauthd and auxprop, because the subsequent steps differ significantly
depending on the password-verification service.

Cyrus SASL determines the password-verification service from the
pwcheck_method parameter. If you plan to use saslauthd, configure your
smtpd.conf as follows:

Global parameters
log level: 3
pwcheck_method: saslauthd

Understanding SMTP Authentication 231

232

Chapter 15

If you plan to use an auxiliary plug-in instead, use this in your smtpd.conf:

Global parameters
log level: 3
pwcheck_method: auxprop

Selecting SMTP AUTH Mechanisms

Cyrus SASL leaves it to the client to pick the mechanisms to use for authen-
tication. This can lead to authentication failures under the following
conditions:

¢ If you offer mechanisms that require configuration that you haven’t
done. For example, if you don’t use Kerberos, but your server offers
KERBEROS and the client picks it, the authentication will fail.

¢ Ifyou chose saslauthd as the password-verification service, but you did
not limit the mechanisms to plaintext mechanisms. In this case, authenti-
cation would fail if a non-plaintext mechanism were selected because
saslauthd cannot handle mechanisms other than PLAIN and LOGIN.

You can ensure that your server offers a specific list of mechanisms with
the mech_list parameter. For example, if you're using saslauthd, your
smtpd.conf file must look like this:

Global parameters
log_level: 3
pwcheck_method: saslauthd
mech_list: PLAIN LOGIN

With auxiliary plug-ins, you can choose a different list, such as this:

Global parameters

log level: 3

pwcheck_method: auxprop

mech_list: PLAIN LOGIN CRAM-MD5 DIGEST-MD5

With the mechanism choice in place, you now have to configure either
saslauthd or an auxiliary plug-in. Proceed with the next section if you want to
configure saslauthd, or skip ahead to the “Configuring Auxiliary Plug-ins
(auxprop)” section to configure auxprop.

Configuring saslauthd

saslauthd is a stand-alone daemon that communicates with authentication
backends. You configure saslauthd with command-line options. Before
starting the daemon, do the following.

1. Check the authentication backends that your saslauthd supports.
2. Prepare the saslauthd environment.

3. Configure an authentication backend for saslauthd.

Checking for Supported Authentication Backends

You won’t get very far if saslauthd does not support the authentication
backend that you want to use. Run saslauthd -v to get a list of authentication
backends that your saslauthd binary supports. Here’s an example:

saslauthd -v
saslauthd 2.1.17
authentication mechanisms: getpwent pam rimap shadow ldap

Notice that saslauthd labels its backends as “authentication mecha-
nisms.” Don’t confuse this with SMTP AUTH mechanisms such as PLAIN
and CRAM-MDb5.

If the mechanism you need is not in the list, you need to rebuild Cyrus
SASL. Running ./configure --help in the Cyrus SASL source directory yields a
set of options for enabling various backends.

Preparing the saslauthd Environment

saslauthd requires a state directory to store a socket and PID file. The Cyrus
SASL installation scripts do not create the state directory for you, but if you
install Cyrus SASL from a binary package, such as an RPM, the package
installer might create the directory. The default state directory is /var/state/
saslauthd, but /var/run/saslauthd is also common.

You can set the state directory location at build time with the --with-
saslauthd=DIR option to the configure script. You can check the state directory
by starting saslauthd in debug mode:

saslauthd -a shadow -d

saslauthd[31076] :main T num_procs : 5

saslauthd[31076] :main : mech_option: NULL

saslauthd[31076] :main : run_path : /var/run/saslauthd
saslauthd[31076] :main : auth_mech : shadow

saslauthd[31076] :main : could not chdir to: /var/run/saslauthd
saslauthd[31076] :main : chdir: No such file or directory
saslauthd[31076] :main : Check to make sure the directory exists and is
saslauthd[31076] :main : writable by the user this process runs as.

In the preceding output, run_path indicates the state directory where
saslauthd will create the socket. Notice that the saslauthd debugging output
shows that this directory does not exist.

If the directory does not exist, create it and make it accessible only to
root and members of root. The following example shows how you might
do that.

Understanding SMTP Authentication 233

234

Chapter 15

mkdir /var/state/saslauthd
chown root:root /var/state/saslauthd
chmod 750 /var/state/saslauthd

Using a Different State Directory

If you would like to use a state directory other than the default (for example,
if you found a state directory for saslauthd on your system), you can use the
-m dir command-line option to override the default setting. For example, if
you'd like to use the /var/run/saslauthd directory, you can run the daemon as
follows:

saslauthd -m /var/run/saslauthd -a shadow

Here, the path is the directory name, and it does not include the name
of the socket (mux). The -a option is for the authentication backend; you'll
see this in the next section.

However, you also have to tell Postfix about the new state directory by
setting the saslauthd_path parameter in your smtpd.conf file. This time, you
must include the filename of the socket, as noted in boldface-italic in the
following example:

Global parameters

log level: 3

pwcheck_method: saslauthd

saslauthd parameters

saslauthd _path: /var/run/saslauthd/mux

After you have the state directory in place, you're ready to connect
saslauthd to an authentication backend.

Configuring an Authentication Backend for saslauthd

saslauthd uses the option -a backend_name to select an authentication backend.
The name should be one of the backends listed when you run saslauthd -v, as
mentioned in Table 15-2. The following example uses the shadow backend to
read from the shadow password file:

saslauthd -a shadow

The following sections list the most common authentication backends
used with saslauthd. Have a look at the saslauthd (8) manual page for a
complete list of authentication backends for saslauthd.

Authenticating from Local User Accounts

saslauthd can access the local password file, which should work on most Unix
systems, and it can access the local shadow password file on systems that
support shadow passwords. To read from the regular password file (/etc/
passwd), use the -a getpwent parameter.

NOTE

saslauthd -a getpwent

On systems that use shadow passwords, you can start saslauthd with the
option -a shadow to make it access /etc/shadow; you must run saslauthd as root
to access /etc/shadow:

saslauthd -a shadow

Authenticating from PAM

saslauthd supports PAM (Pluggable Authentication Modules) for authen-
ticating SMTP users. To gain access to the backends that PAM supports,
create /etc/pam.d/smtp and add configuration parameters specific to your
needs and your system, or add the appropriate settings to /etc/pam. conf.

Here’s an example of what you might put in /etc/pam.d/smtp on a Red
Hat Fedora Core 1 system:

#%PAM-1.0
auth required /1ib/security/pam_stack.so service=system-auth
account required /1lib/security/pam_stack.so service=system-auth

The configuration filename must be smtp, because RFC 2554 says that the service
name for SASL over SMTP is smtp. Postfix passes the value smtp as the service name
to the sasl_server new() function. This service name is then passed to saslauthd
and ultimately to PAM, which in turn looks in smtp for authentication instructions.

After configuring PAM, you can start saslauthd as follows:

saslauthd -a pam

Authenticating with an IMAP Server

saslauthd supports an unusual authentication backend that connects to an
IMAP server. This one is different because it is the IMAP server checking the
username and password, but not the SASL libraries.

You configure IMAP as an authentication backend for saslauthd with two
parameters. The first is the usual -a to select a backend, and then use -0 to
specify an IMAP server, as in this example:

saslauthd -a rimap -0 imap.example.com

Authenticating from LDAP

saslauthd can read credentials from an OpenLDAP server. LDAP queries and
other parameters for connecting to an LDAP server can be very complicated,
so you don’t pass these parameters to saslauthd through the command line.
Instead, it reads the configuration from a separate file. The default filename
is /usr/local/etc/saslauthd.conf, but you can specify a different file with the
-0 file parameter.

Understanding SMTP Authentication 235

236

NOTE

NOTE

Chapter 15

Here’s an example saslauthd.conf file:

ldap_servers: ldap://127.0.0.1/ ldap://172.16.10.7/
ldap_bind_dn: cn=saslauthd,dc=example,dc=com
ldap_bind_pw: Yanggt!

ldap_timeout: 10

ldap_time_limit: 10

ldap scope: sub

ldap_search base: dc=people,dc=example,dc=com
ldap_auth_method: bind

ldap_filter: (| (&(cn=%u)(&(uid=%u@%r)(smtpAuth=Y)))
ldap_debug: 0

ldap_verbose: off

ldap ssl: no

ldap_start_tls: no

ldap_referrals: yes

Obviously, the query (defined here with the ldap_search_base and
ldap_filter parameters) depends on your own LDAP configuration.

There are many more LDAP parameters than are listed here. See the auth_ldap module
Jor saslauthd for the complete list.

Let’s say that you put your configuration in /etc/saslauthd.conf. You
would start saslauthd as follows:

saslauthd -a ldap -0 /etc/saslauthd.conf

Configuring Auxiliary Plug-ins (auxprop)

Unlike saslauthd-based backends, applications that use auxiliary plug-ins
with the auxprop system run the plug-ins directly, reading the configuration
from the application’s own SASL configuration file. As mentioned earlier,
the application configuration file for Postfix is smtpd.conf. The following
sections show you how to configure the auxiliary plug-ins that come with the
SASL source.

There are more auxiliary plug-ins for SASL than ave listed in this section, such as
Idapdb, which you can find in the /contrib section of the Open LDAP source files. The
ldapdb plug-in is excellent, but it is difficult to install because it doesn’t come with a
Mabkefile or other build tool. The discussion in this chapter focuses on configurations
Sfor intermediate users.

Using the sasldb2 Plug-In

Cyrus SASL comes with a standard plug-in named sasldb2 that is used mostly
in Cyrus IMAP, but can be used separately. The sasldb2 plug-in comes with
two utilities: saslpasswd2 for user management, and sasldblistusers2 for listing
all users in sasldb2,

CAUTION

CAUTION

The database and tool names end with a “2” because they belong to Cyrus SASL 2.x.
They had to be renamed to avoid conflicts with Cyrus SASL 1.x, because the Cyrus
SASL API changed between the two versions. If you find tools without a number at the
end, they are probably for Cyrus SASL 1.x and will not work with version 2.

To configure Cyrus SASL with sasldb2, you need to do two things:

1. Create the sasldb2 database.

2. Configure SASL to read from the database.

Creating the sasldb2 Database

You can create the sasldb2 database by running the saslpasswd2 command as
root. The option -c creates a sasldb2 database in the /etc/sasldb2 file. Here’s
an example that creates the database, adds a user, and a realm of the Postfix
myhostname (you cannot create the database unless you add a user):

saslpasswd2 -c -u “postconf -h myhostname™ test
Password:
Again (for verification):

The sasldb2 plug-in requires a realm in addition to the credentials. Postfix uses the
value of the smtpd_sasl _local_domain parameter as the realm (it is emply by default).
Postfix can have only one realm per smtpd instance, effectively limiting authentication
to a single realm.

After creating the database, limit access to the root user and the postfix
group:

chmod 640 /etc/sasldb2

chgrp postfix /etc/sasldb2

1s -1 /etc/sasldb2

~IW-T----- 1 root postfix 12288 Feb 4 16:23 /etc/sasldb2

If you offer the OTP mechanism, you must also make the database file
writable by Postfix, so that it can mark expired passwords. You may need to
modify the ownership and permissions if another group needs to access the
database file.

Configuring SASL to Read from the sasldb2 Database

To tell Postfix about the sasldb2 database, edit the smtpd.conf file and
specify auxprop as the password-verification service and sasldb as the

auxprop plug-in type:
Global parameters

log_level: 3
pwcheck_method: auxprop

Understanding SMTP Authentication 237

238

Chapter 15

mech_list: PLAIN LOGIN CRAM-MDS5 DIGEST-MD5
auxiliary Plugin parameters
auxprop_plugin: sasldb

Using the sql Plug-In
Cyrus SASL 2 offers access to two popular relational databases: MySQL and
PostgreSQL. Both are available through the sql auxiliary plug-in, and they
use these same configuration parameters:
sql_engine
The sql_engine parameter specifies the database type. As of Cyrus SASL
2.1.17, you can pick mysql or pgsql.
sql_hostnames

The sql_hostnames parameter specifies the database server name. You can
specify one or more FQDNSs or IP addresses separated by commas. If you
pick localhost, the SQL engine tries to communicate over a socket.

sql_database

The sql_database parameter defines the name of the database to
connect to.

sql_user
The sql_user parameter defines the database username.

sql_passwd
The sql_passwd parameter defines the password (in plaintext) for the
database user.

sql_select
The sql_select parameter defines the SELECT statement used to find the
password for a given username and realm.

sql_insert
The sql_insert parameter defines an INSERT statement for allowing the
SASL library to create users in the SQL database (making it accessible to
programs such as saslpasswd2).

sql_update
The sql_update parameter defines the UPDATE statement that allows the
SASL library or a plug-in to update a user in the SQL database for a
mechanism such as OTP. The sql_update parameter must be used in com-
bination with sql_insert.

sql_usessl
The sql_usessl parameter allows you to use an encrypted connection to
the database. By default, it is off (sql_usessl: no); use a setting of yes, 1,
on, or true to enable SSL..

CAUTION

Cyrus SASL provides the following macros that you can use in your
parameter settings to build database queries:

%u This macro is replaced with the username provided during
authentication.

% This is a placeholder for the password; this is the default column
name for plaintext passwords.

%r This macro is replaced with the realm provided during
authentication.

% This specifies the submitted value that should replace an existing
value during an SQL UPDATE or INSERT operation.

Macros must be quoted separately with single quotation marks (') when you define a
query in smtpd. conf.

Configuring MySQL for SASL

The first thing to do when configuring MySQL for SASL in Postfix is to
create a database and table. This example SQL statement creates a table with
the default fields that Cyrus SASL expects, plus an extra field that lets you
disable relay access for a particular user:

mysql> CREATE TABLE “users™ (
“id® int(11) unsigned NOT NULL auto_increment,
“username” varchar(255) NOT NULL default ‘o',
“userrealm” varchar(255) NOT NULL default 'mail.example.com’',
“userpassword” varchar(255) NOT NULL default '1stP@ss’,
“auth”™ tinyint(1) default '1',
PRIMARY KEY (id™),
UNIQUE KEY “id™ ("id")
) TYPE=MyISAM COMMENT='SMTP AUTH relay users';

As you can see, all of the fields (id, username, userrealm, userpassword, and
auth) have default values. It’s particularly important that there be a default
password so that an attacker can’t try a null password.

Next you need to create a MySQL user that can read and write to the
SASL authorization database. For example, this sequence of commands
creates a user named postfix:

mysql> CONNECT mysql;

mysql> INSERT INTO user VALUES
("localhost', "postfix’, ", "Y', "Y', ¥ Y Y YT Y Y Y Y
YLV

mysql> UPDATE mysql.user SET password=PASSWORD("Yanggt!") WHERE user='postfix'
AND host="'localhost';

mysql> GRANT SELECT, UPDATE ON mail.users TO 'postfix'@'localhost’;

mysql> FLUSH PRIVILEGES;

Understanding SMTP Authentication 239

Add a test entry to the users table with a command like this:
mysql> INSERT INTO “users™ VALUES (1, 'test’,'mail.example.com','testpass',0);

Finally, after setting up the MySQL database, configure the auxiliary plug-
in authentication backend in your smtpd. conf file with settings such as these:

Global parameters

log level: 3

pwcheck_method: auxprop

mech_list: PLAIN LOGIN CRAM-MDS DIGEST-MD5
auxiliary Plugin parameters
auxprop_plugin: sql

sql_engine: mysql

sql_hostnames: localhost

sql_database: mail

sql_user: postfix

sql_passwd: Yanggt!

sql_select: SELECT %p FROM users WHERE username = 'Zu' AND userrealm = '%r' AND auth = '1'
sql usessl: no

Notice the auxprop password-verification service and the sql plug-in.
Refer back to the “Using the sql Plug-In” section for the meanings of the
other parameters and the macros.

NOTE Read options.html in the Cyrus SASL doc divectory for move detailed information on
notation and parameters.

Configuring PostgreSQL for SASL

The process for using PostgreSQL with SASL is very similar to that for using
MySQL. Here’s how to create a mail database in PostgreSQL:

createdb mail
CREATE DATABASE

Now, connect to the database and create a table for the SASL users as
follows:

psql -d mail
Welcome to psql 7.3.4, the PostgreSQL interactive terminal.
Type: \copyright for distribution terms
\h for help with SOL commands
\? for help on internal slash commands
\g or terminate with semicolon to execute query
\q to quit
mail=# CREATE TABLE public.users

240 Chapter 15

mail(# id int4 NOT NULL,

mail(# "username" varchar(2ss),

mail(# "userrealm" varchar(2ss),

mail(# “userpassword" varchar(2ss),

mail(# auth int2 DEFAULT o,

mail(# CONSTRAINT id PRIMARY KEY (id)

mail(#) WITHOUT 0IDS;

NOTICE: CREATE TABLE / PRIMARY KEY will create implicit index 'id' for table 'users'
CREATE TABLE

mail=# COMMENT ON TABLE public.users IS 'mail users';
COMMENT

mail=#

Next, make a user that can read from and write to the database:

mail=# CREATE USER postfix PASSWORD 'Yanggt!' NOCREATEDB NOCREATEUSER;
CREATE USER

Give this user SELECT and UPDATE access to the table:

mail=# GRANT UPDATE,SELECT ON users TO postfix;
GRANT

The next step is to create a test account entry in the mail table:
mail=# INSERT INTO users VALUES ('1','test’','mail.example.com','testpass','1');

Finally, with the PostgreSQL database in place, you can configure the
auxiliary plug-in like this in smtpd.conf:

Global parameters

log level: 3

pwcheck_method: auxprop

mech_list: PLAIN LOGIN CRAM-MDS DIGEST-MD5
auxiliary Plugin parameters
auxprop_plugin: sql

sql_engine: pgsql

sql_hostnames: localhost

sql_database: mail

sql_user: postfix

sql passwd: Yanggt!

sql_select: SELECT %p FROM users WHERE username = '%u' AND realm = '%r' AND auth = '1'
sql_usessl: no

After configuring your authentication backend, you are ready to test
authentication.

Understanding SMTP Authentication M

Testing the Authentication

After configuring Cyrus SASL with either saslauthd or an auxiliary plug-in
and one backend, you should test it before you configure SMTP AUTH in
Postfix as described in Chapter 16. Experience has shown that most
problems with SMTP AUTH arise from problematic Cyrus SASL installations,
not from Postfix itself.

The first step in testing is to find the testing tools. Unless you installed
Cyrus SASL from source code, this might not be an easy task (by default, the
tools are in the sample/ subdirectory of the source distribution). If you use a
Cyrus SASL installation that came with an operating system distribution, you
will have to look closely for programs named client and server.

NOTE The names of the binaries are far from consistent among operating system packages,
and some packages don’t even install all of the binaries. Check for cyrus-*-devel pack-
ages, and look at the names of the programs in these packages. They're not necessarily
named client and server.

For example, Red Hat Linux ships a mixture of Cyrus SASL 1.x and 2.x,
renaming the binaries to sas1-sample-client and sasl-sample-server for Cyrus SASL
1.x and sas12-sample-client and saslz-sample-server for 2.x.

Once you have found the client and server programs, follow these steps
to test authentication:

1. Start saslauthd if you use a backend that requires saslauthd as a
password-verification service.

2. Create the server configuration file.

fs

Start the server program.

4. Test authentication with the client program.

Starting saslauthd

If you chose a backend that uses saslauthd as the password-verification
service (that is, it does not use an auxiliary plug-in such as sasldb or a
SQL database), you should start saslauthd with debugging parameters
from command line. Don’t use an init script; you want to be able to use
the -d option, which tells the main saslauthd not to go into daemon mode,
but rather to remain attached to the current terminal and print debugging
output.

Here’s an example of starting up saslauthd for shadow password
authentication:

saslauthd -m /var/state/saslauthd -a shadow -d

saslauthd[4401] :main : num_procs : 5

saslauthd[4401] :main : mech_option: NULL
saslauthd[4401] :main : run_path : /var/run/saslauthd
saslauthd[4401] :main : auth_mech : shadow

242 Chapter 15

saslauthd[4401]
saslauthd[4401]
saslauthd[4401]
saslauthd[4401]
saslauthd[4402]
saslauthd[4401]
saslauthd[4401]
saslauthd[4401]
saslauthd[4401]

:ipc_init : using accept lock file: /var/run/saslauthd/mux.accept
:detach_tty : master pid is: o

:ipc_init : listening on socket: /var/run/saslauthd/mux

:main : using process model

:get_accept_lock : acquired accept lock

thave_baby : forked child: 4402

thave_baby : forked child: 4403

:have_baby : forked child: 4404

:have_baby : forked child: 4405

NOTE

Creating the Server Configuration File

Now you need to create the configuration file for the server program. Recall
that each SASL application requires its own configuration file; the test
program server will need a sample.conf file. However, the test configuration
should be the same as the configuration you used for Postfix. The easiest way
to do this is to create a symbolic link to your smtpd.conf file, as follows:

cd /usr/lib/sasl2/
1n -s smtpd.conf sample.conf

Starting the Server Program

Open a new shell and run the server program with the -s and -p options to
specify the service and port for the server:

server -s rcmd -p 8000

trying 10, 1, 6

socket: Address family not supported by protocol
trying 2, 1, 6

Make sure you use a port that your machine isn’t already using.
The meaning of remd is not well documented.

Testing with the Client Program

Finally, start the client program, and let it connect to the server. Once
connected, the client program asks you to enter an authentication ID, an
authorization ID, and a password. Use the -m command-line option to choose
a mechanism. The following example uses test as the authentication and
authorization IDs and testpass as the password on localhost (127.0.0.1):

client -s rcmd -p 8000 -m PLAIN 127.0.0.1
receiving capability list... recv: {11}
PLAIN LOGIN

PLAIN LOGIN

please enter an authentication id: test
please enter an authorization id: test

Understanding SMTP Authentication 243

Password:

send: {5}

PLAIN

send: {1}

Y

send: {18}
test[0]test[0]testpass
successful authentication
closing connection

You're looking for the successful authentication message. You can also
monitor the communication on the server program’s side. The following
example shows the connection initiation and the credentials coming in and

being verified

server -s rcmd -p 8000

trying 10, 1, 6

socket: Address family not supported by protocol

trying 2, 1, 6

accepted new connection

send: {11}
PLAIN LOGIN
recv: {5}
PLAIN

recv: {1}

Y

recv: {18}

test[0]test[0]testpass
successful authentication 'test’

closing connection

Finally, if you’re using a backend that requires saslauthd, you can see

what’s happening as saslauthd verifies the credentials. It should look
something like this:

saslauthd -m /var/run/saslauthd -a shadow -d

saslauthd[4547] :main ! num_procs : 5

saslauthd[4547] :main : mech_option: NULL

saslauthd[4547] :main : run_path : /var/run/saslauthd
saslauthd[4547] :main : auth_mech : shadow

saslauthd[4547] :ipc_init : using accept lock file: /var/run/saslauthd/mux.accept
saslauthd[4547] :detach_tty : master pid is: 0

saslauthd[4547] :ipc_init : listening on socket: /var/run/saslauthd/mux
saslauthd[4547] :main : using process model

saslauthd[4548] :get_accept_lock : acquired accept lock

saslauthd[4547] :have_baby : forked child: 4548

saslauthd[4547] :have_baby : forked child: 4549

saslauthd[4547] :have_baby : forked child: 4550

244 Chapter 15

saslauthd[4547]
saslauthd[4548]
saslauthd[4548]

[mech=shadow]
saslauthd[4548]
saslauthd[4548]

:have_baby : forked child: 4551
:rel accept lock : released accept lock
:do_auth : auth success: [user=test] [service=rcmd] [realm=]

:do_request : response: OK
:get_accept_lock : acquired accept lock

If something goes wrong, you should be able to zero in on the problem
by going through the following steps:

1. If you're using saslauthd as a password-verification service, look for
[reason=...] in the debugging output.

2. Verify that the user and password are correct in your authentication
backend.

[4-]

Make sure that saslauthd has permission to access your authentication
backend.

4. Verify that you submitted the correct strings for username and password.

Once you have successfully authenticated, proceed to Chapter 16 and
configure the Postfix smtpd daemon to offer SMTP AUTH to mail clients.

The Future of SMTP AUTH

The current SMTP AUTH implementation is far from final. Future versions
of Postfix will see a big change in SASL. Currently the SASL libraries that
access authentication backends are linked and are used from within the smtpd
daemon (the same daemon that handles communication with mail clients).
Figure 15-6 shows what the connection chain looks like.

smtpd Authentication

Mail client : [SASL libs) backend

Figure 15-6: Current SASL integration into Postfix

Accessing the authentication backends usually requires a privileged user,
so anyone who could hijack the daemon responsible for SMTP AUTH would
be very close to the user database in a system.

Postfix tries to avoid privileged processes wherever possible, especially
when the authentication daemon is exposed directly to the (always hostile)
network. In addition, complexity is an enemy of security, and Cyrus SASL
definitely qualifies as complex.

Understanding SMTP Authentication 245

Sometime in the future, Postfix will have a new daemon (perhaps named
sasld) whose only job is to connect Postfix and the Cyrus SASL libraries. The
communication between Postfix and the new daemon should be as simple as
possible. Figure 15-7 shows how the new connection chain might look.

sasld Authentication

Mail client 3 (SASL libs) backend

Figure 15-7: Future SASL integration into Postfix

The new design will make the daemon that needs to be exposed to the
network less vulnerable to exploits, and this will take Postfix a step closer to
one of its main goals—secure services.

246 Chapter 15

SMTP AUTHENTICATION

“' SMTP authentication (SMTP AUTH)
\ b& allows authorized mail clients with
dynamic IP addresses to relay messages
\‘ through your server without creating an open
relay. This chapter shows you how to enable SMTP
AUTH in your server and client-side SMTP AUTH in
Postfix.

Checking Postfix for SMTP AUTH Support

Although the Postfix source code includes support for SMTP authentication,
it is not enabled by default because Postfix does not come with the SMTP
AUTH library that handles the actual work. When you build Postfix, you
need to tell the build process about this library.

The Postfix packages provided with many distributions come with
SMTP AUTH support. You can easily verify whether your version of
Postfix already has support for SMTP AUTH enabled. Run 1dd "~ postconf
-h daemon_directory” /smtpd as root and search for libsasl2.so in the output.

248

NOTE

1dd “postconf -h daemon_directory” /smtpd
libldap.so.2 => /usr/lib/libldap.so.2 (0x00117000)
liblber.so.2 => /usr/lib/liblber.so.2 (0x008a9000)
libpcre.so.0 => /1lib/libpcre.so.0 (0x00b86000)
libsasl2.so.2 => /usr/lib/libsasl2.so.2 (0x00101000) ©
libssl.so.4 => /1lib/libssl.so.4 (0x00b11000)
libcrypto.so.4 => /1ib/libcrypto.so.4 (0x00977000)
libgssapi_krb5.s0.2 => /usr/lib/libgssapi_krb5.s0.2 (0x00afc000)
libkrb5.s0.3 => /usr/lib/libkrb5.s0.3 (0x00a6f000)
libcom_err.so.2 => /lib/libcom_err.so.2 (0x00a6a000)
libkscrypto.so.3 => /usr/lib/libk5crypto.so.3 (0x00ad8000)
libresolv.so.2 => /1lib/libresolv.so.2 (0x00965000)
libdl.so.2 => /lib/libdl.so.2 (0x008b8&000)
libz.so0.1 => /usr/lib/libz.so0.1 (0x008bd000)
libdb-4.1.s0 => /1ib/libdb-4.1.s0 (0x00c18000)
libnsl.so.1 => /lib/libnsl.so.1 (0x008fe000)
libc.so.6 => /lib/libc.so.6 (0x0076e000)
libcrypt.so.1 => /1ib/libcrypt.so.1 (0x008d0000)
/1ib/1d-1inux.so0.2 => /1ib/1d-linux.so.2 (0x00759000)
libpthread.so.0 => /lib/libpthread.so.0 (0x00912000)

® The output of libsasl.so.2, which is the current major Cyrus SASL
version, indicates that SASL support has been compiled into Postfix and you
are ready to configure SMTP authentication.

Postfix also supports the older Cyrus SASL version, 1.5. If you find 1ibsasl.so.7

in the output of the 1dd command, your version of Postfix was built with Cyrus
SASL 1.5. If you find only libsasl.so.7, consider upgrading to Cyrus SASL 2;

the authentication backend support in this release is a substantial improvement over
that of version 1.5.

Adding SMTP AUTH Support to Postfix

Chapter 16

If you don’t have SASL support in your Postfix installation and want to use
SMTP AUTH, you need to rebuild Postfix. The first thing you need to do is
locate the Cyrus SASL libraries and header files on your system. Search for
the libraries with a find command like this:

find /usr -name 'libsasl*.*'
fusr/lib/sasl2/libsasldb.la
fusr/lib/sasl2/libsasldb.a
fusr/lib/sasl2/libsasldb.s0.2.0.15
/usr/lib/sasl2/libsasldb.so
fusr/lib/sasl2/libsasldb.so.2
/usr/lib/libsasl2.s0.2.0.15
/usr/lib/libsasl2.so0.2

fusr/lib/libsasl2.la
fusr/lib/libsasl2.a
fusr/lib/libsasl2.so

In the preceding example, you can see that the Cyrus SASL 2 library is in
/usr/lib. Make a note of this location, and then search for the corresponding
include files with this command:

find /usr -name '*sasl*.h’
/usr/include/sasl/sasl.h

/usr/include/sasl/saslplug.h
/usr/include/sasl/saslutil.h

NOTE Linux distributions put header files and libraries in separate packages in a misguided
effort to save disk space. If you ean’t find the include files for Cyrus SASL on your sys-
tem, but the libraries are there, locate and install the SASL packages that end in -dev
or -devel.

If you don’t have the Cyrus SASL library on your system, read Chapter 15
to configure and install it. Once you know where the header and include file
directories are, you can build Postfix with SASL support like this:

1. Unpack the Postfix source as a regular user.
2. Change into the Postfix source directory.

3. Set the build options and run make makefiles and make, like this:

$ CCARGS="-DUSE_SASL_AUTH -I/usr/include/sasl AUXLIBS="-L/usr/lib -1lsasl2"
make makefiles
$ make

Keep in mind that these are the options for SASL only; you may wish
to add more options as described in the *_README files in the README_FILES
directory of the Postfix source tree.

4. Become the superuser (root).

If this is your first Postfix installation, run make install. However, if you're
upgrading or replacing an existing installation, run make upgrade.

6. Verify that you have SASL support as described at the beginning of this
chapter.

Server-Side SMTP Authentication

This section of the chapter explains how to configure the Postfix smtpd
server to offer SMTP AUTH to mail clients. Once authenticated, the clients
can relay messages through the Postfix server even if their IP address is not
within the range of IP addresses defined by the mynetworks configuration
parameter.

SMTP Authentication 249

250

CAUTION 70 properly configure SMTP AUTH on your server, you not only need to configure and

Chapter 16

link the Postfix library with the Cyrus SASL library, but you must also configure Cyrus
SASL to communicate with an authentication backend. See Chapter 15 for the details.

Mail server
Mail client :)
Postfix

user:pass:

yes/no

realm:app

Figure 16-1: Server-side SMTP AUTH architecture

Figure 16-1 shows a mail client that authenticates itself with a mail server
before sending a message to be relayed to a remote destination. The server
compares the credentials from the mail client against the credentials stored
in an authentication backend. The server relays messages for the client only
if the credentials that were sent match the ones that are stored.

Enabling and Configuring the Server

After configuring an authentication backend in SASL, as described in
Chapter 15, you must configure the server as follows:

Enable server-side SMTP AUTH.

Configure the SASL mechanisms that will be offered to clients.
Configure SMTP AUTH support for nonstandard mail clients.
Configure the realm Postfix will pass to the SASL library.

ol ol O

Configure relay permissions in Postfix.

NOTE

Running Postfix chrooted and offering SMTP AUTH is not complicated. Follow the
instructions in this chapter to set up server-side authentication. Once you have proven
that non-chrooted SMTP authentication works, proceed to Chapter 20; running SMTP
AUTH with a chrooted Postfix is used as an example to describe chroot setups.

Enabling Server-Side SMTP AUTH

The first thing you need to do is enable server-side SMTP authentication for
the Postfix smtpd server, because this feature is disabled by default. Set the
smtpd_sasl_auth_enable parameter in main.cf to turn it on:

smtpd_sasl auth_enable = yes

Configuring SASL Mechanisms

Now you must define the authentication mechanisms that Postfix should
offer to mail clients. Cyrus SASL provides several mechanisms that range
from anonymous “authentication” to very strong systems such as Kerberos.

You can control the offered mechanisms with the
smtpd_sasl_security_options parameter. Set it to a comma-separated list of one
or more of the following options:

noanonymous
This setting ensures that the server actually verifies the client’s creden-
tials. This is the default setting, and you should definitely keep this,
because some spammers know about anonymous SMTP authentication.
Make sure that your smtpd_sasl_security_options parameter always lists
noanonymous; otherwise, your mail server will almost certainly be abused as
an open relay.

noplaintext
Adding noplaintext to the list of SASL security options excludes all plain-
text authentication mechanisms, such as PLAIN and LOGIN. This is rec-
ommended because plaintext credentials are trivial to sniff from a
network.

noactive
This setting excludes SASL mechanisms that are susceptible to active
(non-dictionary) attacks. For example, mutual authentication is not sus-
ceptible to active attacks.

nodictionary
This keyword excludes all mechanisms that can be broken by means of a
dictionary attack. A dictionary attacker attempts to break a password by
brute force, trying many different passwords until one works.

mutual_auth
Using mutual_auth allows only mechanisms that provide mutual authenti-
cation. This form of authentication requires the server to authenticate
itself to the client as well as the other way around.

SMTP Authentication 251

When testing the configuration, you do not need to change this
parameter; the default of smtpd_sasl_security_options = noanonymous keeps
you safe from spammers but still allows plaintext mechanisms so that
debugging is slightly easier. Later, when you have verified that SMTP
AUTH works, you should disable plaintext authentication by expanding
your smtpd_sasl_security_options parameter in main.cf to at least this:

smtpd_sasl_security_options = noanonymous, noplaintext

CAUTION A mail client using plaintext mechanisms sends the username and password as a
base64-encoded string. It is trivial to decode this, so anyone listening to an SMTP dia-
log can use this data to abuse your mail server. Unfortunately, this is the only mecha-
nism that Outlook Express supports. If you want to offer plaintext mechanisms, offer
them only over an encrypted communication layer, as described in Chapler 18.

Configuring SMTP AUTH Support for Nonstandard Mail Clients

The next thing you should probably do is tell Postfix to offer an alternative
notation in the SMTP dialog so that broken mail clients still can use SMTP
AUTH.

Broken mail clients do not recognize SMTP AUTH when it is offered as
described in RFC 2222; instead, they recognize a notation that had been
used in a draft of the standards document, where an equal sign (=) instead of
a blank space appeared between the AUTH statement and the mechanisms.

Clients known to be “broken” are old versions of Microsoft Outlook,
Microsoft Outlook Express, and Netscape Mail.

To support broken mail clients, set broken_sasl_auth_clients in main.cf as
follows:

broken_sasl auth_clients = yes

After reloading Postfix, you will notice another AUTH line in the SMTP
dialog that includes the equal sign. Here's an example:

telnet mail.example.com 25
220 mail.example.com ESMTP Postfix
EHLO client.example.com
250-mail.example.com
250-PIPELINING

250-SIZE 51200000

250-VRFY

250-ETRN

250-AUTH LOGIN PLAIN
250-AUTH=LOGIN PLAIN

250 8BITMIME

QUIT

252 Chapter 16

Configuring the SASL Realm

You may need to set a realm within in main.cf to be sent to the Cyrus SASL
password-verification service that you use, depending on the version of Cyrus
SASL and the specific service. When a client wants to authenticate, Postfix
sends the realm to Cyrus SASL along with the client’s credentials. You can
define the realm in Postfix with the smtpd_sasl_local_domain parameter in
main.cf; this parameter is empty by default and should be left empty unless
you use an auxiliary plug-in that actually requires a realm:

smtpd_sasl_local_domain =

You should change this to match the password-verification service that
you use:

auxprop
The services that use auxiliary properties expect a realm. Set smtpd_
sasl_local_domain to the realm your SMTP AUTH users have in the
authentication backend. For example, if your SMTP AUTH users in
/etc/sasldb2 have the realm example.com, use the following:

smtpd_sasl local domain = example.com

saslauthd prior to Cyrus SASL 2.1.17
saslauthd prior to Cyrus SASL 2.1.17 cannot deal with realms; you should
not use one. Remove the value for smtpd_sasl local_domain as follows:

smtpd_sasl_local_domain =

saslauthd for Cyrus SASL 2.1.17
saslauthd for Cyrus SASL 2.1.17 does not know what to do with a realm,
so it ignores this information. It doesn’t matter what realm you send, so
you don’t have to touch the smtpd_sasl_local_domain parameter.

saslauthd Cyrus SASL 2.1.19
saslauthd Cyrus SASL 2.1.19 and later versions made sending the realm
configurable. Use the option -r when you start saslauthd to have the
realm passed to your password-verification backend.

Configuring Relay Permissions

The final step is to tell Postfix to permit relaying for SASL-authenticated
clients. To do this, add permit_sasl_authenticated to the list of smtpd_recipient_
restrictions in your configuration. Here’s an example:

smtpd_recipient_restrictions =

[...]

permit_sasl_authenticated,

SMTP Authentication 253

254

Chapter 16

permit_mynetworks,
reject unauth_destination

[...]

Make sure you put the permit_sasl_authenticated keyword early enough in
the parameter so that an authenticating client doesn’t accidentally get
kicked out by another rule first (most importantly reject_unauth_destination).

You're now finished with the basic server SMTP AUTH setup. Reload
your configuration and start testing.

Testing Server-Side SMTP AUTH

Testing server-side SMTP authentication involves these steps:

Check the mail log to find errors that Postfix can detect on its own.
Check the SMTP dialog to make sure that smtpd offers SMTP AUTH.

3. Authenticate a user to ensure that Postfix can communicate with
Cyrus SASL.

4. Send a test message to a remote user to verify that authenticated users

M

can relay messages to nonlocal destinations through your server.

Checking the Mail Log

Check the log file by printing out all lines in /var/log/maillog that contain the
words reject, error, warning, fatal, or panic followed by a colon (:) with this
command:

egrep '(reject|error|warning|fatal|panic):' /var/log/maillog

You shouldn’t see any errors related to SMTP AUTH, but if there are
any, check your configuration for typographical errors or Cyrus SASL—
related problems.

Now, enable verbose logging for the smtpd daemon, and keep the logging
level set this way for as long as you test SMTP AUTH. Make this change by
adding a -v to the smtpd command in master.cf:

=== == = = = == == == = = ====
service type private unpriv chroot wakeup maxproc command + args

(yes) (yes) (yes) (never) (100)

mus= == = = = == == == = = —
smtp inet n - n - - smtpd -v

#smtps inet n - n - - smtpd

Once you reload Postfix, the changes will take effect.

Checking the SMTP Dialog

The next test is to make sure that Postfix offers SMTP AUTH to mail clients,
so that clients know when they can initiate SMTP authentication. Connect to
your server, and send an EHLO introduction to the server (SMTP AUTH only
works in extended SMTP communication). Here's an example:

$ telnet mail.example.com 25

220 mail.example.com ESMTP Postfix

EHLO client.example.com

250-mail.example.com

250-PIPELINING

250-SIZE 10240000

250-VRFY

250-ETRN

250-STARTTLS

250-AUTH NTLM LOGIN PLAIN DIGEST-MD5 CRAM-MD5
250-AUTH=NTLM LOGIN PLAIN DIGEST-MD5 CRAM-MD5
250-XVERP

250 8BITMIME

QuIT

221 Bye

You can easily see that the AUTH parameter not only tells you that SMTP
AUTH is enabled, but also supplies a list of possible authentication mecha-
nisms. Furthermore, a near-identical line follows for broken clients.

If the server doesn’t offer the AUTH parameter, check that you did the
following:

e Compiled Postfix with Cyrus SASL support

¢ Configured the basic parameters correctly, and that you don’t have any
typos in main.cf; use postconf -n to verify the parameters

¢ Connected to the correct servers and that you use EHLO, not HELO

Authenticating a User

To authenticate a user, you need a base64-encoded string that contains a
valid username and password from your authentication backend. For
example, if your username is test and your password is testpass, use this
command:

$ perl -MMIME::Base64 -e 'print encode_base64("test\otest\otestpass");'

The output will look like this:

dGVzdABOZXNOAHR1c3RwYXNz

SMTP Authentication 255

256

CAUTION

Chapter 16

Now, connect to your server and start an extended SMTP communi-
cation using EHLO, and then use AUTH PLAIN to tell Postfix that you want to
authenticate using the plaintext mechanism with the base64-encoded string.
Here’s an example of a successful test:

$ telnet mail.example.com 25

220 mail.example.com ESMTP Postfix

EHLO client.example.com

250-mail.example.com

250-PIPELINING

250-SIZE 10240000

250-VRFY

250-ETRN

250-STARTTLS

250-AUTH NTLM LOGIN PLAIN DIGEST-MD5 CRAM-MDS
250-AUTH=NTLM LOGIN PLAIN DIGEST-MD5 CRAM-MDS
250-XVERP

250 8BITMIME

AUTH PLAIN dGVzdABOZXNOAHR1c3RwYXNz

235 Authentication successful

QUIT

221 Bye

You can easily see the 235 Authentication successful confirmation. If you
experience problems and the server responds with 535 Error: authentication
failed, try the following:
¢ Check your log file for errors.
¢ Verify the username and password in your authentication backend.
¢ Check over your Cyrus SASL configuration in /usr/lib/sasl2/smtpd.conf,

as described in Chapter 15.
¢ Reload Postfix if you changed /usr/1lib/sasl2/smtpd.conf.
¢ Decode your base64 string, and compare the output against your origi-

nal input. (If you want to test the null bytes, redirect the output to a file

and run a text editor on the file.) Here’s an example:

$ perl -MMIME::Base64 -e 'print decode_base64("dGVzdABOZXNOAHRLc3RwYXNzZ") ;'
testtesttestpass

If you post your logs to a mailing list, you probably should alter them to remove the user-
name and password information that comes with the verbose logging level. As an alter-
native, you could create a test user that you will delete as soon as you finish.

Relaying a Test Message

You're finally ready to see if the Postfix server permits an authenticated user
to relay a message. First, though, you need to make sure that other relay
permissions don’t interfere with your new authentication-based rules. To
ensure this, connect from a host or network that is nof permitted to relay
without SMTP authentication. It pays to double-check, so first try to send a
message without using SMTP AUTH.

If you don’t have access to a client outside the network range defined in
mynetworks, disable the mynetworks parameter, and set mynetworks_style = host
while you test. This restricts relay permission to the server only, so you can
use any host on your local area network to test the server.

Connect to the server as described in the previous section, but do not QUIT
after you have authenticated successfully. Instead, proceed with a regular
SMTP communication session that sends mail to a nonlocal user. Here’s an
example that sends a message from john.doe@example.com to echo@postfix-
book. com:

$ telnet mail.example.com 25

220 mail.example.com ESMTP Postfix

EHLO client.example.com

250-mail.example.com

250-PIPELINING

250-SIZE 10240000

250-VRFY

250-ETRN

250-AUTH DIGEST-MD5 CRAM-MD5 GSSAPI PLAIN LOGIN
250-AUTH=DIGEST-MD5 CRAM-MD5 GSSAPI PLAIN LOGIN
250-XVERP

250 8BITMIME

AUTH PLAIN dGVzdABOZXNOAHRLc3RwYXNz

235 Authentication successful

MAIL FROM: <john.doe@example.com>

250 Ok

RCPT TO: <echo@postfix-book.com>

250 Ok

DATA

354 End data with <CR><LF>.<CR><LF>

This is a server side SMTP AUTH test. If the mail is
accepted, relaying works.

250 Ok: queued as 3FF15E1C65

QUIT

221 Bye

Connection closed by foreign host.

SMTP Authentication 257

258

Chapter 16

Notice the 250 0k message that the server sends as a response to the RCPT
T0: command; this is usually a good sign, but you still want to confirm that a
message goes through. If this test doesn’t work, try the following:

e Check your log file for errors.

¢ Ensure that you set permit_sasl_authenticated correctly, as explained in
the earlier “Configuring Relay Permissions” section.

¢ Double-check your base64 string.

¢ Check your SMTP dialog for typographical errors.

Advanced Server Settings

Since the arrival of SMTP AUTH capability in Postfix, some parameters have
been added to give you better control over how SMTP AUTH should be
handled. The following subsections will tell you what Postfix can do today.

Offering SMTP AUTH Selectively

You can exclude networks so that Postfix will not offer SMTP AUTH to them.
This is extremely useful when you have Netscape mail clients (Netscape 4.x)
that insist on using SMTP AUTH as soon as it is offered; no matter whether
you configured them to use it or not.

Set the smtpd_sasl_exceptions_networks parameter in main.cf, and either
use the variables Postfix knows from its own configuration, such as mynetworks,
or define a list in IP address/CIDR notation (for example, 172.16.0.117/32):

smtpd_sasl_exceptions_networks = $mynetworks, 172.16.0.117/32

Enforcing an SMTP AUTH User to Match a Specific Envelope Sender

As soon as a mail client is authenticated, it is allowed to send with any
envelope sender it chooses. You can limit the mail clients, however, to
using a specific envelope sender address with the smtpd_sender_login_maps
parameter; it defines the path to a map that matches envelope sender
addresses with SASL login names. The map, such as /etc/postfix/
smtpd_sender_login_map, would look like this:

flintstone@example.com flintstone
rubble@example.com rubble
sales@example.com flintstone, rubble

The left-hand side of the map contains the envelope sender, and the
right-hand side contains either a single login name or a list of comma-
separated login names. Convert the map with postmap, for example postmap
hash:/etc/postfix/smtpd_sender_login_map, and tell Postfix to read the map in
main.cf.

smtpd_sender_login_maps = hash:/etc/postfix/smtpd_sender_login_map

You might also use NIS, LDAP, or SQL queries, instead of a hash map type.

Once Postfix knows about the map, you must choose one of two
restrictions to specify what should be done with clients whose envelope
sender doesn’t match their login name.

reject_sender_login_mismatch
This will restrict all clients, whether they are SMTP-authenticated or not.
reject_unauthenticated_sender_login_mismatch
This will restrict only clients that haven’t SMTP-authenticated
themselves.

Either one or the other parameter goes into the list of smtpd_recipient_
restrictions in main.cf:

smtpd_recipient_restrictions =

reject_unauthenticated_sender_login_mismatch

Client-Side SMTP Authentication

In client-side SMTP authentication, the smtp and Imtp Postfix daemons use
Cyrus SASL to authenticate themselves with a remote server. In a client
configuration, you need to configure Postfix, but you don’t need to worry
about configuring Cyrus SASL. Both daemons, smtp and 1mtp, can use any
mechanism that the Cyrus SASL library supports.

Mail client
ai C.Iel'l T Mail server
Postfix

Figure 16-2: Client-side SMTP AUTH architecture

SMTP Authentication 259

260

Chapter 16

Figure 16-2 shows the Postfix smtp daemon engaged in an SMTP
AUTH session with a remote mail server. The client (smtp) sends
credentials stored in an SASL password file to acquire relay permission
from the remote server.

AUTH for the Postfix SMTP Client

Configuring SMTP authentication for the Postfix client is much easier than
configuring it for the server. Although you still need the Cyrus SASL library,
you don’t need to configure SASL.

Here’s what you need to do:

1. Ask the remote server for the mechanisms that it offers.
2. Enable clientside SMTP AUTH.

3. Provide a file that holds your SMTP AUTH credentials.
4. Configure Postfix to use the credential file.

5. Disable unsafe authentication mechanisms.

Checking for Valid Authentication Mechanisms

Your first step is to find out what mechanisms the remote server offers and
make sure that your Cyrus SASL installation provides you with libraries to

support those mechanisms. Connect to your mail server, and send an EHLO
greeting to list the mechanisms. Here’s an example:

$ telnet mail.remote-example.com 25

220 mail.remote-example.com ESMTP

EHLO mail.example.com
250-mail.remote-example.com
250-PIPELINING

250-SIZE 10240000

250-VRFY

250-ETRN

250-STARTTLS

250-AUTH LOGIN PLAIN DIGEST-MD5 CRAM-MD5
250-AUTH=LOGIN PLAIN DIGEST-MD5 CRAM-MD5
250-XVERP

250 8BITMIME

QUIT

221 Bye

You can see that the server not only supports the LOGIN, PLAIN,
DIGEST-MD5, and CRAM-MD5 mechanisms, but also will talk to the broken
clients described earlier in the “Configuring SMTP AUTH Support for
Nonstandard Mail Clients” section.

Now, list the libraries in your Cyrus SASL library directory. For example,
if your Cyrus installation prefix is /usr/local, you would run the following.

np

1s -1 /usr/local/lib/sasl2/lib*.so
The output should look something like this:

/usr/local/lib/sasl2/1ibanonymous.so
/usr/local/lib/sasl2/1ibcrammds.so
/usr/local/lib/sasl2/1ibdigestmds.so
/usr/local/lib/sasl2/1iblogin.so
/usr/local/lib/sasl2/1libplain.so
/usr/local/lib/sasl2/1ibsasldb.so

It’s easy to see that this installation supports the ANONYMOUS,
CRAM-MD5, DIGEST-MD5, LOGIN, and PLAIN mechanisms. (Note
that libsasldb.so is not an authentication mechanism library.)

Once you have all this information, compare the mechanisms the
remote server offers to the listing of your own server’s Cyrus SASL libraries,
and you will know which mechanisms your Postfix client will be able to use
to connect to that server.

Enabling Client-Side SMTP AUTH

By default, client-side SMTP authentication is disabled. To turn it on, set the
smtp_sasl_auth_enable parameter in main.cf to yes:

smtp_sasl_auth_enable = yes

This enables client-side SMTP AUTH; you still have to tell Postfix where
to find the secrets needed to authenticate and which of the mechanisms
(from those the remote server offers) Postfix may use.

Storing SMTP AUTH Credentials

Your next step is to prepare the data that the Postfix client will use when it
wants to authenticate with one or more remote servers. As root, create the
/etc/postfix/sasl_passwd map file if it does not already exist:

touch /etc/postfix/sasl_passwd

Postfix always open maps before chrooting, so this table can safely be kept outside
the jail.

Edit this file, putting the fully qualified domain name of a mail server
that requires authentication on the left-hand side, and a colon-separated
username and password pair on the right. Here’s an example that sets user-
names and passwords for mail.example.com and relay.another.example.com:

mail.example.com test:testpass
relay.another.example.com username:password

SMTP Authentication 261

262

NOTE

mnpP

Chapter 16

After editing sasl_passwd, change the permissions so that only root can
read it; remember that it holds confidential information that local users
should not be able to read. Do this with the chown and chmod commands:

chown root:root /etc/postfix/sasl passwd && chmod 600 /etc/postfix/sasl_passwd

Don’t worry about the permissions for Postfix; it reads sasl_passwd before it switches
to a user with fewer privileges and before entering a chroot jail.

With the proper permissions in place, convert the map file into an
indexed map that Postfix can access quickly (you need to do this every time
you change sasl_passwd):

postmap hash:/etc/postfix/sasl_passwd

Configuring Postfix to Use the SMTP AUTH Credentials

Next, you need to tell the Postfix client where to find the authentication
credential map that you just set up. Set the smtp_sasl_password_maps parameter
in main.cf to the full path of your sasl_passwd file, but specify that the map
values are stored in a hash file with the hash: qualifier. Here’s an example:

smtp_sasl_password_maps = hash:/etc/postfix/sasl_passwd

Restricting Authentication Mechanisms

As a final client configuration step, you should disable the use of unsafe
mechanisms. Set the smtp_sasl_security_options parameter to a comma-
separated list of mechanism types that the client may not use (see the earlier
“Configuring SASL Mechanisms” section for a list of valid types). By default,
smtp_sasl_security_options is set to noanonymous, but you should disable
plaintext mechanisms if you can (that s, if your server supports an encrypted
mechanism, such as DIGEST-MD5 or CRAM-MD5). To do this, add the
following line to main.cf:

smtp_sasl_security options = noanonymous, noplaintext

If the remote server offers only plaintext mechanisms, but you don’t want to use them
over an unencrypted communication layer, you can see if the server offers STARTTLS.
If it does, you can force Postfix to use TLS, as described in Chapter 18, so that the
client sends plaintext credentials only after establishing an encrypted communication
layer.

NOTE

Testing Client-Side SMTP AUTH

Testing your client’s authentication involves both local and remote testing:

1. Verify the credentials with the remote server to make sure that the
credentials you have are valid and are known to the remote server.

Mo

Check the log file.
Use Postfix to send a test message to a remote user, showing that you can
relay messages through the server.

Verifying Credentials with the Remote Server

Your first step is to verify that the username and password you have
actually work. Connect to the remote server, as described in the earlier
“Authenticating a User” section, and authenticate with the given username
and password.

If the remote server does not offer plaintext mechanisms over an unencrypted communi-
cation layer, you ean try to use OpenSSL’s s_client to establish a TLS session, see if it
offers plaintext mechanisms, and try to AUTH then. See Chapter 18 for the details on
how to do this.

You can also try configuring the credentials into a GUI mail client that supports
various authentication mechanisms. Send a message with the client to see if the server
accepts the credentials.

After you're sure that the server accepts your username and password,
you can focus on your Postfix configuration.

Checking the Log File

The next step is to look for obvious errors in the Postfix log file with the now-
familiar egrep command:

egrep '(reject|error|warning|fatal|panic):' /var/log/maillog

Using the Postfix Client to Send a Test Message to a Remote User

The final test is to send a message to a remote destination using your Postfix
mail client daemon (smtp). Perform the following steps:

1. Increase the log level for the smtp daemon.
2. Send a message to a remote destination.

3. Check the log file for confirmation of successful authentication.

SMTP Authentication 263

264

CAUTION

Chapter 16

Increasing the Log Level for the smip Daemon

To increase the amount of log output for the smtp client daemon, edit your
master.cf file and give the smtp program a -v argument as follows (make sure
not to confuse the smtpd line with smtp):

=== == = = = == == == = = ===z
service type private unpriv chroot wakeup maxproc command + args

(yes) (yes) (yes) (never) (100)

=== == = = = == == == = = ====
smtp inet n - n - - smtpd

#smtps inet n - n - - smtpd

smtp unix - - n - - smtp -v

After you reload the Postfix configuration, the smtp daemon will log the
SMTP AUTH communication and the calculation of credential information,
such as encoding or decoding the base64 string.

You probably want to be careful about sending your Postfix log to a mailing list,
because smtp logs your credentials in plaintext. Take care to veplace your username
and password (with XXX, for example) before posting your log.

Sending a Test Message to a Remote Destination

You can check whether client-side authentication works by using a GUI mail
client to transport the message to your Postfix client daemon. Or you can use
the following command line to send a message to echo@postfix-book.com,
which sends a message back to the envelope sender that includes the
complete header and body of the original message:

$ mail -s 'Testing client side authentication' echo@postfix-book.com
Testing...

Cc:
$

Checking the Log File for Successful Authentication

Finally, check the Postfix log file for successful authentication with the grep
command:

grep '235 Authentication successful' /var/log/maillog

If everything went well, you should see one or more lines like the
following that says that the authentication with relay.example.com worked:

Jan 20 12:40:39 mail postfix/smtp[21740]: < relay.example.com[172.16.0.100]:
235 Authentication successful

NOTE You should also have a new message in the destination mailbox; check the headers of
this message.

The Imtp Client

Configuring the Postfix 1mtp client to use SMTP AUTH is very similar to
configuring the smtp client (see the earlier “AUTH for the Postfix SMTP
Client” section). These are the steps you need to perform:

1. Enable clientside SMTP AUTH by setting Imtp_sasl auth_enable = yes in
your main.cf file.

2. Create a file that holds the SMTP AUTH credentials. To do this,
refer to the earlier “Storing SMTP AUTH Credentials” section, but
use lmtp_passwd as a filename instead of smtp_passwd (of course, you
could also share the credential file with the smtp client).

3. Configure Postfix to use the file with the SASL credentials; set
Imtp_sasl_password_maps = /etc/postfix/lmtp_passwd in your main.cf file.

4. Restrict the client to safe authentication mechanisms (as described in
the next section).

Restricting Imtp to Groups of Mechanisms

The process for banning unsafe mechanisms for the lmtp client daemon is
very similar to the process for the smtp client daemon, described in the
section, “Restricting Authentication Mechanisms.” For example, if you want
to make sure that the client does not use plaintext mechanisms, set the
Imtp_sasl_security_options parameter as follows:

Imtp_sasl_security options = noplaintext, noanonymous

However, there’s one slight difference from the smtp daemon settings: If
your lmtp client daemon happens to be on the same machine as your Postfix
server, and if they communicate via sockets, you might as well loosen the
settings a little and allow plaintext mechanisms:

Imtp_sasl_security_options = noanonymous

Testing SMTP AUTH for the Imtp Client

To test the 1mtp client, perform the same steps as described earlier in the
“Testing Client-Side SMTP AUTH” section. In addition, you may want to use
imtest, a utility in the Cyrus IMAP package. This is particularly useful when
your goal is to make the Postfix Imtp client deliver mail to the LMTP server
that comes with the Cyrus IMAP server.

SMTP Authentication 265

UNDERSTANDING TRANSPORT
LAYER SECURITY

So far, you have seen that Postfix is rather
secure from the system point of view—
that is, Postfix tries hard to eliminate

break-in. As noble as these efforts are, however, there’s
still something missing. The problem is that SMTP, as designed, does not
protect you from intruders that may be snooping on your network packets.
This may sound like a bleak situation, and although you may think there is
a bit of exaggeration in descriptions of the dangers, there are some real
instances where it really does make sense to protect the SMTP conversation
from eavesdroppers.

For cxamp]e, a company that trxr;.'hzlnges content over the Internet
through mail servers may want to consider encrypting this content, and
anyone running an SMTP server that supports SMTP AUTH allowing
plaintext authentication has a reason to be worried. Sensitive message
content and passwords will be transferred in plaintext TCP packets, and
anyone who might have access to the path of that data stream could dump
the TCP packets to their own computer and reconstruct the data stream.

268

You can fix this problem with Transport Layer Security (TLS), a system
that encrypts communication between two hosts before any sensitive data goes
out over the wire. In Postfix, you can even use TLS to permit relaying, based
on a certificate system. This chapter explains the theory of TLS in Postfix,
whether it is acting as a mail client, a mail server, or a mail server that permits
relaying based on client certificates. When you are finished with this chapter,
you will also know when it makes sense to use TLS and its prerequisites.

TLS Basics

Chapter 17

The default SMTP client-server communication is not encrypted. The
client simply establishes a TCP connection and starts transmitting data
(see Figure 17-1). Unless the content itself was encrypted by another
system, it is transported in plaintext, readable by anyone capable of
listening to the data stream. An unwanted listener could easily see the
content, and if they had control of a router, could possibly alter it.

LAN Internet

From: Sender <sender@example.com>
. To: Recipient <recipient@example.com>
Mail server f«—{ Subject: Forgot my password! #| Mail client

The old one was "Riin@K," but I cannot log...

Figure 17-1: Unencrypted communication—readable by everyone

These attacks are impossible when the client and server use TLS (see
Figure 17-2), because this system provides three things:

Privacy
The communication between the client and server is encapsulated inside
an encrypted session. A third party without access to the client and server
cannot decipher the data that is exchanged.

Integrity
Even though a man-in-the-middle attack is possible, both sides can
immediately detect any alteration in the content.

Proof of authenticity
The client and server can exchange certificates that are validated by a
trusted certification authority (CA) and that prove the authenticity of
the hosts involved. A certificate contains information such as the FQDN
of the host. DNS spoofing, to name just one possible attack, would be
detected before data was sent.

Mail server X2 ¢! Mail client

Server certificate

Figure 17-2: Encrypted communication—readable by the sender and recipient only
There are three common misconceptions about TLS:

¢ TLS does not protect the content after it goes from the client to the
server. As soon as the server receives and stores the message, it is once
again in clear text.

¢ TLS only guarantees encryption from the mail client to the mail server.
Remember that the mail server may need to pass the message along to
another server. Other mail servers on message’s path to the final destina-
tion might not support TLS. Therefore, although you can enforce
encryption on your own mail hubs, it is likely that you do not have con-
trol over the transport as soon as the message leaves your organization,
As soon as one of the servers along the way does not support TLS, it goes
back to clear text.

e TLS does not necessarily protect mail that is accepted and later returned
as undeliverable. There is no guarantee that the return mail will follow
the same path.

If any of these is a concern, you must encrypt the message content before
sending it. Popular email encryption tools include S/MIME, PGP, and GnuPG.

How TLS Works

Transport Layer Security encrypts the communication between exactly two
hosts. A TLS-enabled session proceeds as follows:

A client connects to a server.
2. The hosts initiate the SMTP communication.

3. The server offers TLS with the STARTTLS keyword within the SMTP
communication.

4. If the client is capable of using TLS, it responds by sending STARTTLS to
the server.

5. The public server certificate is signed with the private key and sent to the
client.

6. The client verifies the server’s certificate by checking its CA signature
against the public CA signature in the client’s own root store.

Understanding Transport layer Security 269

270

7. The client verifies the server’s certificate by comparing the certificate’s
Common Name string with the server's DNS hostname.

8. The client and server switch to encrypted communication.

9. The hosts exchange data.

10. The session ends.

As you can see from this procedure, certificates play an important role
in TLS.

Understanding Certificates

Chapter 17

Encryption technology does not depend on certificates, but they are
necessary to ensure that only the hosts intended to talk to each other can
actually do so. If each host can verify the other’s certificate, they agree to
encrypt their session. Otherwise, they abort the whole process of encryption
and issue warnings, because the basis for trust (authenticity) is absent.

How to Establish Trust

When you create a certificate, your system writes two files to the disk; one
contains the public key and the other one the private key. The sending host
encrypts some data with its private key, and the receiving host uses the public
key to decrypt and verify the authenticity of the sender. It’s possible to verify
a public key that has been signed by a CA—the CA acts as guarantor for the
validity of the sending host.

The receiving host does not query the CA directly every time it wants
to verify a certificate. This would not only cause a lot of traffic, but also leave
too much room for external manipulation when the verification data goes
over the network. Instead, the receiver locally compares the signature of
the CA’s public key against a checksum of the certificate in question. The
CA calculates and adds this checksum to the sender’s certificate during the
signing process. Any changes to the signed certificate would alter the check-
sum and render it useless, because the TLS mechanism would immediately
detect the tampering.

To establish trust between a client and a server they must meet different
requirements:

Client
A mail client that verifies the authenticity of a server certificate must
have access to the CA’s public key. Someone must import this key into
the client’s operating system certification store, where the mail client
and other applications can read it.

Server
A mail server that issues a certificate must have valid private and public
keys. The public keys must be signed by a CA.

Which Certification Authority Svits Your Needs?

There are several certification authorities out there who will be happy to sign
your certificate. The question of which CA suits your needs best depends on
the CA’s services and prices, and your reason for using certificates:

Private use
If you can only envision using your certificate for private purposes, where
you or a limited number of users need a signed certificate (for example,
coworkers at your company or servers in a larger network at various loca-
tions all under your control), then you can consider being your own cer-
tificate authority. Sign the server certificate yourself, and then provide
both your CA root certificate and your server certificate to your clients
and servers. This involves less effort and money, but mail clients and serv-
ers outside your organization won’t trust your certificate.

Official use
If you need official contact with outside users and mail servers that you
have no control over, you should employ the services of an official CA.
You can start your search for a CA that suits your specific needs at the
PKI page (http://www.pki-page.org), where you will find a comprehensive
list of CAs around the world.

Creating Certificates

Whether you plan to roll your own CA or have your certificate signed by an
official certification authority, you will always have to create a certificate
request to have it signed.

It’s easy to create a new certificate—all you need to do is run a script and
a few commands that do most of the work for you. All you need is some
information at hand when you run the script.

Required Information

Most of the following parameters speak for themselves; you shouldn’t have
any trouble figuring them out. However, there is one entry where you must
be a little careful: Common Name. The value you provide in server certificates
must match the DNS name of your host. If there is a mismatch, TLS suspects
a man-in-the-middle attack (in which someone stole the certificate), and it
aborts verification. With client certificates, it’s common to specify a personal
name instead.

Here is the information you need to have at hand:

¢ Country
¢ State or province
¢ City or other municipal area

¢ Organization

Understanding Transport layer Security 2?]

272

Chapter 17

¢ Organization unit
¢ Common name

¢ Email address

Creating the CA Certificate

If you decide that you want to sign your own certificates, you need to create
your own CA certificate first. (If you're using an official CA, skip ahead to
the “Distributing and Installing the CA Certificate” section.) Run misc/CA.pl
-newca in your OpenSSL distribution:

./CA.pl -newca

CA certificate filename (or enter to create)

Making CA certificate ...

Generating a 1024 bit RSA private key

...... +HHHH+

couHEREHE

writing new private key to './demoCA/private/cakey.pem'’

Enter PEM pass phrase: @

Verifying - Enter PEM pass phrase:

You are about to be asked to enter information that will be incorporated
into your certificate request.

What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:EX

State or Province Name (full name) [Some-State]:Examplia

Locality Name (eg, city) []:Exampleton

Organization Name (eg, company) [Internet Widgits Pty Ltd]:Example Inc.
Organizational Unit Name (eg, section) []:Certification Authority
Common Name (eg, YOUR name) []:mail.example.com

Email Address []:postmaster@example.com

® When generating your CA certificate, you need to enter a passphrase.
This will be required any time you work as a CA to sign and revoke certificates.

The misc/CA.pl program creates subdirectories where it puts files and
directories needed to run a CA. After you have run the program, you should
have a new misc/demoCA subdirectory, which should look like this:

tree demoCA/
demoCA/

|-- cacert.pem @
|-- certs

|-- crl

|-- index.txt
| -- newcerts

NOTE

|-- private
| "-- cakey.pem @
"-- serial

@ cacert.pen is the CA’s public key. Your hosts will need it in their
certificate root store to verify the signature in the Postfix public certificate.

® cakey.pem is the CA’s private key. It must be protected and only the
user who runs the CA should have read/write permission.

Distributing and Installing the CA Certificate

The next step is to distribute the CA certificate to all clients that will use TLS.
If you run your own CA you will find the CA certificate located in misc/demoCA.
By default openssl will save it as cacert.pem. If you've chosen an official certifi-
cation authority you will have to find and download their CA certificate.

How you distribute the CA certificate mainly depends on the applica-
tions that will use the certificate and the environment they run in. GUI
applications usually have a certificate root store provided by the operating
system, which offers centralized management of all certificates.

On servers that provide a command-line interface only and use Open-
SSL, there is no such thing as a single, centralized root store. Command-line
applications can use their own store, and the location of the store must be
configured within each application. Since Postfix is a command-line applica-
tion, you will need to configure either the smtp daemon or the smtpd daemon
or both to gain access to a store containing CA certificates. This part of the
configuration will be explained in Chapter 18.

Separate stoves add flexibility for designing specialized solutions, but they also add com-
Plexity to keeping certificates in various certificate stoves up-to-date.

Windows Installation

Windows wants the certificate in a different format—OpenSSL can convert
the CA certificate for you. You don’t have to use CA.pl; you can run openssl
directly. In the following example, the SSL installation directory is /usr/
local/ssl:

cd /usr/local/ssl/misc/demoCA
openssl x509 -in cacert.pem -out cacert.der -outform DER

After you've done this, you will find a new file named cacert.der in /usr/
local/ss1/misc/demoCA.
Installing a CA certificate on Windows is fairly easy:

1. Copy cacert.der to your Windows machine.
2. Double-click cacert.der to start the installation process (see Figure 17-3).
3. Click Install Certificate, and follow the Certificate Import Wizard.

Understanding Transpor! layer Security 2?3

Certificate HE

General | petails | Certification Path |

Certificate Information

This certificate is intended to:
+Ensures the identity of a remote computer il

*Proves your identity to a remote computer

+Ensures software came from software publisher

+Protects software from alteration after publication

+Protects e-mail messages

+Allows data to be signed with the current time ;I

Issued to: mail.example.com

Issued by: mail.example.com

valid from 10/23/2003 to 10/22/2004

Instal Certficate...| zsuer carement |

|

Figure 17-3: A successfully installed CA certificate on a Windows host

4. Click Yes when asked to add the certificate to the root store.

5. After the installation is done, double-click cacert.der again to verify that
you successfully added it

Linux (KDE-3.1.x) Installation

Installing a CA certificate on Linux/KDE is just as easy as on Windows:

1. Copy cacert.der to your Linux machine.

2. Double-click cacert.der in Konqueror to start the installation process.

3. KDE starts KDE Secure Certificate Import.

4. Choose Import.

5. A dialog box will appear, confirming that the import was successful.

6. Start KDE Control Center, and choose Security & Privacy from the
left pane,.

7. Choose Crypto from the left pane.

Click the SSL Signers tab in the right pane.
Verify that the new certificate is there (see Figure 17-4).
Mac OS X Installation

Installing a certificate on Max OS X depends on the version you run. Here’s
a mixture of command-line and GUI steps that should work on all versions
(OS X prior to 10.3 and later).

274 Chapter 17

=* Crypto - KDE Control Module B@@

[85L | OpenssL | vour Certificates | Authentication | Feer 5L Certificates | SSL Signers |

Orgranization | Organizational Unit el | Import.... |
[ForfEngine Tne. Certiication AdTharty Division
Global Sign rv-sa Fartners CA
Global Sign nv-sa Primary Class 1 CA
GlobalSign nv-sa Primary Class 2 CA Festore.
Global Sign nv-sa Primary Class 3 CA
Global Sign rv-sa Foot CA
GTE Corporation |
GTE Corporation GTE CyberTrust Solutions, Inc,
GTE Corporation GTE CyberTrust Solutions, Inc.
MailEngine Inc. Certification Authority Division
Fostic Book o L —
RS54 Data Security, Inc. Commercial Certification Authority
FiSA Data Security, Inc. Secure Server Certification Authority
ITC TrustCenter for Security in Data Metworks GmbH TC TrustCenter Class 0 CA
TC TrustCenter for Security in Data Networks GmbH TC TrustCenter Class 1 CA
TC TrustCenter for Security in Data Networks GmbH TC TrustCenter Class 2 CA
TC TrustCenter for Security in Data Networks GmbH TC TrustCenter Class 3 CA
TC TrustCenter for Security in Data Networks GmbH TC TrustCenter Class 4 CA
Thawte Thawte Universal CA Root a|
|1hawhe Consulting Certification Services Division :
K| | [«]»
S Commorn Marne: mall.example com
| Eman!za?llon.‘ o Poslﬂx ka E I Email: postmaster@example.com

X Accept for site signing
X Accept far email signing
¢ Accept for code signing

o I J[v_om][> oo

Figure 17-4: A successfully installed CA certificate on a Linux host
To install a certificate manually, follow these steps:

1. Copy the cacert.pem to your home directory.
2. Open a Terminal window.
3

Import cacert.pem into the keychain:

$ sudo certtool i cacert.pem k=/System/Library/Keychains/X509Anchors
...certificate successfully imported

To verify that the certificate was successfully imported, follow these steps:

1. In the GUI open keychain in /Applications/Utilities/. You will only see
your local keychain.

2. Choose Add Keychain from the File menu, and add /System/Library/
Keychains/X509Anchors to your keychain.

3. Search for your CA certificate by scrolling in the X509Anchors keychain.
The Name column should refer to it by the Common Name you used
(see Figure 17-5).

Understanding Transport Layer Security 275

276

Chapter 17

006 Keychain: X509Anchors (locked) (=]

i

¥ 0@ @

Password Note ; Delete Go : Unlock

Show Keychains

4
|2

70 items

Name A Kind | Created [Modified
[KMD-CA Server certificate - -—

[= mail.example.com certificate - -

[=] NetLock Expressz (Class (certificate - -

[=2 NetLock Kozjegyzol (Clas: certificate -- --

[=2 NetLock Uzleti (Class B) T certificate - -

r=1 QunVadis Roat Certificatic certificate - - X

{ Attrit | Access Control }

mail.example.com]
Expires Friday, October 22, 2004 10:02:59 PM Europe/Berlin

When using this certificate: { Use System Settings i]

B Trust Settings

Fingerprints
SHA1 2835DICOCACDBSCZDDAIEIDASGGEFCICS9E7DFZFD
MD5 75CB07A25D4AGBF4F2 02 49F5 ABO9F 12 FE

Type X.509 v3 root certificate
Version 3

| NER &

Serial Number 00

Figure 17-5: A successfully installed CA certificate on a Mac OS X host

Creating Your Server’s Certificate

Once you've installed the CA certificate, it’s time to create the Postfix server
certificate. On the command line in /usr/local/ssl/misc, run the following
command. It generates the certificate request that you'll have the CA sign in
the following “Signing Your Server’s Certificate” section:

openssl req -new -nodes -keyout postfix_private_key.pem -out
postfix_private_key.pem -days 365
Generating a 1024 bit RSA private key

You are about to be asked to enter information that will be incorporated
into your certificate request.

What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:EX

State or Province Name (full name) [Some-State]:Examplia

Locality Name (eg, city) []:Exampleton

Organization Name (eg, company) [Internet Widgits Pty Ltd]:Example Inc.

CAUTION

Organizational Unit Name (eg, section) []:MX Services
Common Name (eg, YOUR name) []:mail.example.com

Email Address []:postmaster@example.com

Please enter the following 'extra' attributes

to be sent with your certificate request

A challenge password []:

An optional company name []:

#

Don’t usemisc/CA.pl to create the private key file, unless you edit it so that it does not
ask for a private passphrase to be included in the key. Adding a passphrase would mean
that whenever Postfix wanted to use the certificate, someone would have to enter the
passphrase! Postfix loads the certificate wpon any start or vestart of its smtp and smtpd
daemons, and if there’s a password, a user has to enter it. Needless to say, it would be
absurdly impractical for a server like Postfix not to be able to restart on its own.

Signing Your Server’s Certificate

The final step in building the server certificate is to get it signed by a CA.
If you are using an official CA, follow their instructions. Otherwise, run
openssl from the command line to create postfix_public_cert.pem from
postfix_private_key.pem.

openssl ca -policy policy_anything -out postfix_public_cert.pem -infiles
postfix_private_key.pem
Using configuration from /usr/local/ssl/openssl.cnf
Enter pass phrase for ./demoCA/private/cakey.pem:
Check that the request matches the signature
Signature ok
Certificate Details:
Serial Number: 1 (0x1)
Validity
Not Before: Nov 9 21:25:13 2003 GMT
Not After : Nov 8 21:25:13 2004 GMT

Subject:
countryName = EX
stateOrProvinceName = Examplia
localityName = Exampleton
organizationName = Example Inc.
organizationalUnitName = MX Services
commonName = mail.example.com
emailAddress = postmaster@example.com

X509v3 extensions:
X509v3 Basic Constraints:
CA:FALSE
Netscape Comment:
OpenSSL Generated Certificate
X509v3 Subject Key Identifier:
9E:36:9D:9B:ED:4E:32:73:0E:86:55:2A:FF:1B:49:F9:1C:47:17:75

Understanding Transport layer Security 2??

278

Chapter 17

X509v3 Authority Key Identifier:
keyid:00:52:AD:B7:FA:C2:EF:01:1A:9E:7B:0F:57:DB:DC:E4:82:59:8D:0B
DirName:/C=EX/ST=Examplia/L=Exampleton/0O=Certification Authority

Example Inc./CN=mail.example.com/emailAddress=postmaster@example.com
serial:00

Certificate is to be certified until Nov 8 21:25:13 2004 GMT (365 days)

Sign the certificate? [y/n]:y

1 out of 1 certificate requests certified, commit? [y/n]y

Write out database with 1 new entries

Data Base Updated

postfix_public_cert.pemis the certificate that will be sent to clients
during the initial TLS negotiation. Along with this certificate, Postfix will
also send the signature from postfix_private_key.pem. To verify postfix_
public_cert.pem the receiving host will then do some calculation based on
Postfix’s private key signature and the CA certificate signature. The result
must match the signature of postfix_public_cert.pem. Otherwise the public
key will be considered forged, and the communication will be ended
immediately.

Preparing Certificates for Use in Postfix

Regardless of whether you plan to use the certificates for smtp (mail client) or
smtpd (mail server), you should copy all of the certificates to /etc/postfix/certs:

mkdir /etc/postfix/certs
cp cacert.pem /etc/postfix/certs
cp ../*.pem /etc/postfix/certs

Then you must protect the server’s private key, postfix_private_key.pem,
from access by other users on your machine:

cd /etc/postfix/certs
chmod 600 postfix_private_key.pem

When you're finished, the permissions should look like this:

1s -all certs/

total 20

drwxr-xr-x 2 root root 4096 Nov 9 23:03 .
drwxr-xr-x 3 root root 4096 Oct 28 00:13 ..

-rw-r--r-- 1 root root 1379 Nov 9 23:02 cacert.pem
“TW------- 1 root root 1620 Nov 9 23:02 postfix_private_key.pem
-rw-r--r-- 1 root root 3806 Nov 9 23:02 postfix_public_cert.pem

You are now ready to use the Postfix TLS features described in the next
chapter.

USING TRANSPORT LAYER
SECURITY

Transport Layer Security (TLS) for Postfix
comes in two forms: client-side and server-
side TLS. In addition to basic TLS, both
forms provide functionality for performance
tuning and fine-grained TLS enforcement, as well as
enabling wrappers for secure plaintext SMTP AUTH
and having the capability to permit relaying based on
client certificates.

This chapter shows you how to configure Postfix for client- and server-
side TLS. You will see different approaches for deploying TLS and the TLS
daemons that supplement the default set of Postfix daemons.

Checking Postfix for TLS Support

Before you can set up the Postfix configuration files for TLS (described in
RFC 2487), you must check whether your version of Postfix supports it. This
is important, because the stock Postfix source code does not come with TLS

280

NOTE

Chapter 18

capability at all—you must patch the Postfix source code to get TLS and
STARTTLS support. If you use a prepackaged binary, though, you may
already have TLS, because many Linux distributions include it in their
Postfix packages. Postfix 2.2 includes TLS as a compile time option.

The TLS patch for Postfix was developed by Dr. Lutz Jinicke, a member of the
OpenSSL development team who develops encryption technology professionally. As
noted on the OpenSSL website, “The OpenSSL Project is a collaborative effort to
develop a robust, commercial-grade, full-featured, and Open Source toolkit implement-
ing the Secure Sockets Layer (SSL v2/v3) and Transport Layer Security (TLS v1) pro-
tocols as well as a _full-strength general purpose cryptography library.” For more
information on the OpenSSL Project, visit http://www.openssl.org.

Although TLS support comes as a patch, you may already have TLS
support in your Postfix, because many distributions include it in their Postfix
packages.

To check whether your Postfix installation supports TLS, check the
output of postconf -d for tls. A pipeline to a grep command should return
TLS parameters and their default values. Here is an example:

postconf -d | grep tls
smtp_enforce_tls = no
smtp_starttls_timeout = 300s
smtp_tls_CAfile =
smtp_tls_CApath =
smtp_tls_cert_file =
smtp_tls_cipherlist
smtp_tls_dcert_file
smtp_tls dkey file = $smtp tls dcert file
smtp_tls enforce peername = yes
smtp_tls_key file = $smtp_tls_cert file
smtp_tls_loglevel = 0
smtp_tls note starttls offer = no
smtp_tls per site =
smtp_tls_session_cache_database =
smtp_tls_session_cache_timeout = 3600s
smtp_use_tls = no
smtpd_enforce_tls = no
smtpd _tls CAfile =
smtpd_tls CApath =
smtpd_tls_ask_ccert = no
smtpd_tls_auth_only = no
smtpd_tls_ccert_verifydepth
smtpd_tls cert_file =
smtpd_tls_cipherlist =
smtpd_tls_dcert_file =
smtpd_tls_dh1024_param_file

"
w

smtpd_tls_dh512_param_file =
smtpd tls dkey file = $smtpd tls dcert file
smtpd_tls key file = $smtpd tls cert file
smtpd_tls_loglevel = 0
smtpd_tls_received_header = no
smtpd_tls_req_ccert = no
smtpd_tls_session_cache_database =

smtpd tls session cache timeout = 3600s
smtpd_tls wrappermode = no

smtpd_use_tls = no

tls_daemon_random_bytes = 32
tls_daemon_random_source =

tls_random_bytes = 32
tls_random_exchange_name = ${config_directory}/prng_exch
tls_random_prng_update_period = 60s
tls_random_reseed_period = 3600s
tls_random_source =

The existence of all these TLS-related parameters indicates that TLS is
supported.

Building Postfix with TLS Support

If your binary does not have TLS support, you must build a new Postfix
installation. First, check your system for the OpenSSL libraries and header
files (the .h include files). Use find to search for the SSL libraries and
includes as follows:

find /usr -name 'ssl.*'

This command may take some time to complete. If successful, you
should see some output like this:

/usr/include/openssl/ssl.h
/usr/1ib/1ibssl.so
/usr/lib/libssl.a

In this example, ssl.his the include file, libssl.so is the shared version of
the OpenSSL library, and libssl.a is the static version of the library.

If you can’t find OpenSSL on your machine, you can attempt to find a
binary package from your distribution. Be sure to install the OpenSSL
development packages (usually named openssl-dev or openssl-devel);
otherwise, you will probably not get the include files.

If you want to use a newer version of OpenSSL than your distribution
ships with, or if you can’t find a binary package, you can build OpenSSL
yourself. You will see how to do this next.

Using Transport Layer Security 281

282

CAUTION

Chapter 18

Building and Installing OpenSSL from Source Code

OpenSSL, Postfix, and the TLS patch kit are under constant development.
Because the TLS patch kit depends on both Postfix and OpenSSL, you have
to make sure that everything fits together when you download the source
code and the patch kit.

Some Linux distributions ship with OpenSSL libraries that will break parts of your sys-
tem if you overwrite the current OpenSSL installation on your system. If your machine
has OpenSSL 0.9.6 or highey, you should stick with that version unless you know how
to configure a newer version not to conflict with your existing installation.

OpenSSL 0.9.6 or higher works fine with Postfix TLS. As an alternative, you can
install the new library into a different place, thus avoiding the problem of overwriting
the essential libraries.

The easiest way to get appropriate source code is to visit Lutz Janicke’s
website at http://www.aet.tu-cottbus.de/personen/jaenicke/postfix_tls where
you will find a TLS compatibility table. All you need to do is choose the
Postfix, TLS patch kit, and OpenSSL sources from the same row of that table,
and you will be prepared to begin building and installing your sources.

To install OpenSSL, do the following:

1. Asaregular user, unpack the OpenSSL source with the tar xzf openssl-
version.tar.gz command, where version is the OpenSSL version.

2. Change into the newly created directory containing the OpenSSL sources.

3. Read the INSTALL file, and decide whether you need any special options.

4. Ifyou want to build shared libraries, run configure with --shared; shared
libraries are not built by default. If you link Postfix statically against

libopenssl.a, then you will need to recompile all of Postfix if you need to
update OpenSSL due to security issues.

ot

After running the configure script to build the Makefiles, run make &&%
make test.

6. Become the superuser (root), and run make install. If you didn’t build
shared libraries, you're finished.

7. Verify the shared library path; the install process prints this directory just
before terminating. The default path is /usr/local/ss1/1ib.

8. Add the shared library path to your dynamic linker’s runtime search
path. On Linux, this means that you have to add the directory to the
/etc/1d.so.conf file and run ldconfig. On Solaris, you need to run crle.

Building Postfix with TLS

After you've got the OpenSSL libraries and include files, you can build a new
TLS-aware Postfix. You need the Postfix source code and the TLS patch kit.

CAUTION Make sure you check the README and INSTALL files before doing anything; the procedure
Jor installing TLS support may have changed since the date of publication.

o

To build Postfix, follow these steps:

Unpack the Postfix source code and TLS patch kit as a regular user into
separate directories.

Change into the Postfix source directory.

Run patch -p1 < ../tls_dir/pfixtls.diff to apply the patch, where tls_dir
is the directory containing the TLS patch file named pfixtls.diff.

Set the build options, and then run make makefiles and make as follows,

where ssl_prefix is your SSL base directory and sasl2_prefix is your
SASL2 base directory.

$ CFLAGS="-DUSE_SSL -DUSE_SASL_AUTH -Isasl2_prefix/include -Issl_prefix/
includes" AUXLIBS="-Lssl prefix/lib -1ssl -lcrypto -Lsasl_prefix/lib -
lsasl2" @

$ make makefiles

$ make

© These options specify a Postfix build with TLS and SASL2
support. To add more options, read the relevant file in the readme
directory of the Postfix source tree.

Switch to the superuser (root).

Run make install if this is the first installation from source code or make
upgrade if you already had a working Postfix installation.

If you built OpenSSL as a shared library, run 1dd “postconf -h
daemon_directory” /smtpd to verify that the dynamic runtime linker can find
all of the libraries that you used to compile Postfix.

After completing these steps, you should have a Postfix installation that

supports Transport Layer Security.

Server-Side TLS

In server-side TLS, Postfix acts as a mail server (MTA), offering TLS to mail
clients (see Figure 18-1). You can configure Postfix to encrypt the transport
layer, hiding the entire SMTP communication session, to receive plaintext
SMTP AUTH credentials safely, or to relay mail for clients based on the

NOTE

certificates that the clients present.

Postfix does not offer STARTTLS to the sendmail command-line utility. This is a security

Jeature; a TLS-aware sendmail would need to access the server’s private key. However,

the key is owned and is only readable by root, and the Postfix sendmail does not run
as root.

Using Transport Layer Security 283

284

Chapter 18

Mail client

Server certificate

Mail server

Plaintext transport

Figure 18-1: TLS for the Postfix mail server

Basic Server Configuration

To set up server-side TLS, you need to modify five parameters in your Postfix
configuration files. You should also set two additional parameters to facilitate
debugging (this not only helps you find problems, but is handy when tuning
TLS sessions because Postfix gets to know mail clients that can and cannot
use TLS).

The configuration steps are as follows:

Enable TLS in the main Postfix configuration file.
Tell Postfix where to find the certificates required for TLS,
Connect Postfix to a random source generator.

Increase the log level to get useful information as you learn to run TLS.

A e A L e

Add information to mail headers to further trace TLS.

Enabling Server-Side TLS

By default, TLS-capable Postfix servers do not have server-side TLS enabled,
so Postfix does not offer TLS to clients, even if they ask for it. To enable
server-side TLS, set the smtpd_use_tls parameter in main.cf to yes:

smtpd_use_tls = yes

After reloading the configuration, Postfix offers STARTTLS to mail
clients in the SMTP dialog to inform them that they may negotiate a TLS
session. However, enabling server-side TLS is not sufficient to get it working,
because you haven’t told Postfix where to find the server certificates essential
to a TLS session. You will see a message like this in the mail log:

Dec 1 03:07:13 mail postfix/smtpd[741]: TLS engine: do need at least RSA _or_
DSA cert/key data

NOTE

NOTE

Setting Certificate Paths

The next step is to add paths for the files or directories that hold your server
certificates. At the very least, you must provide the server key and certificate
that was signed by a certification authority and the corresponding private key
used to create the certificate request. Both declarations appear in main.cf.
Here is an example, where the certificates are in /etc/postfix/certs:

smtpd_tls_key file = /etc/postfix/certs/postfix_private_key.pem @
smtpd_tls_cert file = /etc/postfix/certs/postfix_public_cert.pem @

O smtpd_tls_key file is the path to the private key.
@ smtpd_tls_cert_file is the path to the server certificate.

The preceding settings assume that your server certificate and private key are in sepa-
rate files. If you decide to put both certificates in a single file, you can point one param-
eler lo the other with a configuration line such as smtpd_tls_cert_file =
$smtpd_tls_key file.

After setting these certificate parameters, you can run Postfix in server-
side TLS mode, but you'll still have several errors and warnings in the log
file. That’s because Postfix can’t transmit the CA’s certificate and verify
certificates sent by mail clients. You still need to configure the source for CA
certificates.

Configuring the Postfix Certificate Root Store

As mentioned earlier in Chapter 17, OpenSSL does not have a default
central root store, so you need to create a root store designed specifically for
your mail system or to use a root store that already exists on your system. The
configuration that you’re about to see uses the ca-bundle.crt file that comes
with the Apache mod_ss1 module, which contains several CA certificates and
servers for Apache.

You may want to set up your own collection of CA certificates in order to make sure that
they really stem from those certification authorities and weren’t modified by some third
party on their way to packaging. This is the safest way to proceed, because all TLS secu-
rity efforts are in vain if the certificates on which this mechanism relies are fakes.

When preparing to collect the CA certificates for your server, be prepared to spend a
considerable amount of time in the process. When we vesearched this chapter, collecting
the certificates turned out to be a very time-consuming task. Nearly all of the
certification authorities seemed to hide the pertinent information on their websites.

To find the Apache mod_ssl ca-bundle.crt on your system, run locate ca-
bundle.crt on the command line:

$ locate ca-bundle.crt
fusr/share/ssl/certs/ca-bundle.crt

Using Transport Layer Security 285

If you do not have the locate command, you need to resort to the slower
find command:

$ find / -name ca-bundle.crt

After you find or install your root store, you must configure Postfix to use
it with the smtpd_tls_CAfile parameter in main.cf. Here’s an example:

smtpd_tls_CAfile = /usr/share/ssl/certs/ca-bundle.crt

If you act as your own certification authority, you need to add your CA
certificate to this root store. You can just append your certificate to the end
of the preexisting root with a cat command, as in this example:

$ cat /usr/local/ssl/misc/demoCA/cacert.pem >> /usr/share/ssl/certs/ca-bundle.crt

286

NOTE

NOTE

NOTE

Chapter 18

If your CA certificate is a link in a chain of certificates, add all of the CA certificales
SJrom your CA certificate down to the root CA certificate in the certificate chain.

The smtpd_tls_CAfile parameter expects all certificates to be located in a
single file. As an alternative, Postfix offers the smtpd_tls_CApath parameter,
which you can set to a directory in which certificates are stored as separate files.

The storage method isn’t the only difference between smtpd_tls_CAfile and smtpd tls_
CApath. The files in smtpd_tls_CApath are consulted only when Postfix needs to verify a
certificate. Howeuver, Postfix reads the files named by the smtpd_tls_CAfile parameter at
startup, before Postfix enters the chroot jail. Therefore, if you decide to run Postifix in a
chrooted environment, smtpd_tls_CAfile is the better choice, because you can place the
certificate files outside the chroot jail.

You might be better off setting both parameters, splitting some CA certi-
ficates into separate files from a main batch in a single file. Postfix reads files
named by smtpd_tls_CAfile first, then consults smtpd_tls_CApath as a fallback.

Connecting Postfix to a Rundom Source Generator

TLS is a safe way to send mail not just because it encrypts the communication
layer, but also because it never uses the same combination of numbers for
any two ciphers. The TLS implementation does this by choosing a (pseudo)
random number for all new TLS sessions.

OpenSSL does not generate its own random numbers because most
Linux and BSD derivatives have built-in random number sources as system
devices in /dev.

If your system doesn’t have built-in random number generation, you can use the
pseudo-random number generator daemon (also by Lutz Jinicke). To configure Posifix
to use this daemon, you set the t1s_random_exchange_name parameter in main.cf.
Have a look at samples/sample-tls.cf in your Postfix distribution for more details.

The two sources for random numbers normally available on your system
are dev:/dev/random and dev:/dev/urandom.

NOTE

/dev/random
The /dev/random generator provides high-quality random data, but you
shouldn’t use it on systems that use TLS heavily. The reason is that /dev/
random can block if a TLS requests random data too quickly, draining the
random source. If this happens, Postfix stops working until the systems
gains enough entropy to provide numbers again.

/dev/urandom
The /dev/urandom generator never blocks because it uses an internal
pseudo-random number generator to create the entropy data. Use /dev/
urandom for systems that start Postfix automatically.

To connect Postfix to a random source generator, set the tls_random_
source parameter in main.cf and reload your configuration:

tls_random_source = dev:/dev/urandom

OpenSSL versions greater than 0.9.6 detect /dev/urandom automatically. If you use one
of these versions, you do not need to set t1s_random_source. OpenSSL 0.9.7 goes even

Surthey, detecting other random source generators. If you're using OpenSSL 0.9.7, look

at its documentation for more details.

Increasing the TLS Log Level

The TLS subsystem provides the smtpd_tls_loglevel parameter to control the
amount of TLS-related information written to your mail log. The five levels
described in Table 18-1 control how verbose the logging is.

Table 18-1: smtpd_t1s_loglevel Levels for smtpd

Log Level Description

0 No TLS logging; this is the default

] Startup and certificate information

2 All of level 1, plus information about the various stages of TLS negotiation
3 All of level 2, plus hex and ASCII dumps of the negotiation process

4 All of level 3, plus hex and ASCIl dumps of the complete transmission

after the mail client sends STARTTLS

The first time you enable server-side TLS, set the log level to 2, which gives
you enough information to start debugging if things don’t work out as planned:

smtpd_tls loglevel = 2

Adding Information to Mail Headers

You may also want your mail server to add TLS information to the Received
header of each message sent using TLS. Do this by setting the smtpd_tls_
received_header parameter in main.cf as follows.

Using Transport Layer Security 287

288

Chapter 18

smtpd_tls_received_header = yes

After a configuration reload, you should see something like this in your
mail headers:

Received: from client.example.com (client.example.com [172.16.0.3])
(using TLSv1 with cipher EDH-RSA-DES-CBC3-SHA (168/168 bits))
(No client certificate requested)
by mail.example.com (Postfix) with ESMTP id B637A7247
for <tls-bounce@mail.examples.com>; Wed, 10 Dec 2003 23:37:02 +0100 (CET)

Testing Server-Side TLS

There are three things to test after you configure the TLS basics:

Check the log file to see if Postfix encountered any errors.
Check for STARTTLS in the SMTP dialog to see that Postfix is
offering TLS.

he

3. Test TLS with the openssl program to prove that Postfix can
initiate a TLS session using the certificates you provided in the
basic configuration.

Checking the Log File

The first test is to look for TLS support by scanning the log file using a
regular expression:

$ egrep '(reject|error|warning|fatal|panic):' /var/log/maillog

This command prints out all lines in /var/log/maillog that contain the
words reject, error, warning, fatal, or panic followed by a colon ().

If you did everything correctly, there shouldn’t be any TLS-related
errors. If problems do crop up, check the configuration file for typos and
check the read permissions of the certificates.

Looking for STARTTLS in SMTP Communication

The next test you should do is run a telnet session to the Postfix server to
verify that it offers TLS to mail clients. Look carefully at the following output
for the STARTTLS keyword:

$ telnet localhost 25

220 mail.example.com ESMTP Postfix
EHLO client.example.com
250-mail.example.com
250-PIPELINING

250-5IZE 10240000

250-VRFY

250-ETRN

250-STARTTLS

250-AUTH NTLM LOGIN PLAIN OTP DIGEST-MD5 CRAM-MDS
250-XVERP

250 8BITMIME

ouIT

221 Bye

Simulating a TLS Mail Client—Server Session with OpenSSL
The final test is a simulation of a mail client-to-server session with the openssl
s_client option. The OpenSSL client can connect to remote hosts with TLS/
SSL, printing out plenty of diagnostic information in the process. If it
succeeds, your TLS server configuration works, and you can now test with a
mail client. If this test fails, you will get a wealth of useful debugging
information for tracking down the error.

Here is an example of a successful session, where your CA path is /etc/
postfix/certs

openssl s_client -starttls smtp -CApath /etc/postfix/certs/ -connect localhost:25
CONNECTED (00000003)
depth=1 /C=DE/ST=Bavaria/L=Munich/0=Postfix Book/OU=#Authoring/CN=mail.example.com/
emailAddress=postmaster@example.com
verify return:1
depth=0 /C=DE/ST=Bavaria/L=Munich/0=Postfix Book/OU=Mailserver/CN=mail.example.com/
emailAddress=postmaster@example.com
verify return:1
Certificate chain
0 s:/C=DE/ST=Bavaria/L=Munich/0=Postfix Book/OU=Mailserver/CN=mail.example.com/
emailAddress=postmaster@example.com
i:/C=DE/ST=Bavaria/L=Munich/0=Postfix Book/OU=#Authoring/CN=mail.example.com/
emailAddress=postmaster@example.com
1 s:/C=DE/ST=Bavaria/L=Munich/0=Postfix Book/OU=#Authoring/CN=mail.example.com/
emailAddress=postmaster@example.com
i:/C=DE/ST=Bavaria/L=Munich/0=Postfix Book/OU=#Authoring/CN=mail.example.com/
emailAddress=postmaster@example.com

Server certificate

MIID4DCCAOmgAWIBAGIBATANBgkqhkiGIwOBAQQFADCBN jELMAKGA1UEBhMCREUX
EDAOBENVBAgTBOJhdmFyaWExDzANBgNVBACTBk11bm] jaDEVMBMGALUEChMMUGY z
dGZpeCBCb29TMRMWEQYDVQQLFA0jOXVOaG9yalsnMRkwFwYDVQQDEXBYWLsLmV4
YN1wbGUUY29tMSUWIWYIKoZIhvcNAQKBFhZwb3NObWFZdGVyQGV4YW1wbGUUY29t
MBAXDTAZMTAyMzIwMTKyOVoXDTAOMTAyM] IwMTkyOVowgZaxCzAIBgNVBAY TAKRF
MRAWDGYDVQQIEWdCYXZhcm1hMQ8WDQYDVQQHEWZNAWSpY 2gxFTATBENVBAGTDF By

Using Transport Layer Security 289

c3RmaXggOmovazE TMBEGATUECXMKTWFpbHN1cnZ1c jEZMBCGAIUEAXMQbWFpbC51
eGFtcGx1LmNvbTEIMCMGCSqGSIb3DOEIARYWcG9zdG1hc3R1ckBleGFtcGx1LmNy
bTCBnzANBgkghkiG9wOBAQEFAAOBjQAwgYkCgYEA9WBR1v3EsemFDqOX5L/4DUCt
80Ipd10X0pNMKgh/LnWuFXivCy52dMMbWtQgWaR+xRKaacylLeIdeyDx5Lwz0g0d6
3zT+M2TAWGi6eQp+u8NpIuDF3eKYRBPoLGMuQiWkOcwNjagXg+U1090VBseMgg/a
0Vj8aNasigqJI2N59sbcCAWEAAOCASowggEmMAKGAIUdEWQCMAAWLAYJYIZIAYba

QgENBBBWHU9WZWS TUOWgR2VUZXIhdGVKIEN1cnRpZmljYXR1IMBOGA1UdDgQWBBOQ]
RXFGfepblNkc6G/57E17xRI1eDCBywYDVROBIHDMIHAgBQIScWoXDhSbW76EWQI
GUMvoySuN6GBpKSBoTCBnjELMAKkGAIUEBhMCREUXEDAOBENVBAgTBOJhdmFyaWEx
DzANBgNVBAcTBk11bmljaDEVMBMGA1UEChMMUG9zdGZpeCBCb29rMRMWEQYDVOOL
FAojOXVoaG9yaWsnMRkwFwYDVOODEXBtYW1sLmV4YW1wbGUuY29tMSUwIwYIKoZI
hvcNAQkBFhZwb3NObWFzdGVyQGVAYW1wbGUuY29tggEAMAOGCSqGSIb3DOEBBAUA
A4GBADUNOgZfc8C1IRir/9DboKup+MSijh1PisbmMOj60WNI6STiNrcjTaF8qH+6
LFxXbclIfWUHaEFvSLSeW79zh7KX67y0U46nVVYdF8+gHV/XnZK6F/6CpwcjOnQP
PI3GDtLoNXU1PqrngrIskWUuDcZwkQB1XinZ1yMSs1gcSDSO

----- END CERTIFICATE-----

subject=/C=DE/ST=Bavaria/L=Munich/0=Postfix Book/OU=Mailserver/CN=mail.example.com/
emailAddress=postmaster@example.com

issuer=/C=DE/ST=Bavaria/L=Munich/0=Postfix Book/OU=#Authoring/CN=mail.example.com/
emailAddress=postmaster@example.com

No client certificate CA names sent

SSL handshake has read 2592 bytes and written 356 bytes
New, TLSv1/SSLv3, Cipher is DHE-RSA-AES256-SHA
Server public key is 1024 bit
SSL-Session:
Protocol : TLSvi
Cipher : DHE-RSA-AES256-SHA
Session-ID: D341BF543EB5690DA873EFDOBOB4CB2EF210930812C14F3DBB85BD1AE92C6CB3
Session-ID-ctx:

Master-Key:
D4E3B4617214EDABE1D2EAF54482FC65D1BD7BF5474F 2FB2E2C0312BE098D8AF29ABC6603C4A89B7B413ED24D79375CD

Key-Arg : None

Start Time: 1068108666

Timeout : 300 (sec)

Verify return code: 0 (ok)
220 mail.example.com ESMTP Postfix (2.0.16-20030921)
ouIT
DONE

Server Performance Tuning

Cryptography puts a load on your processor. At the start of each TLS session,
the client and server perform several private-key operations to sign the
handshake messages—a computationally expensive process. A lot of simul-
taneous TLS sessions can seriously slow down a mail server.

290 Chapter 18

NOTE

By default, Postfix’s smtpd memorizes the session key for its connections.
However, Postfix also allows smtpd processes to terminate after a period of
inactivity to save resources on the server and to load possible new config-
uration information. Unfortunately, this means that Postfix loses a session
key after the smtpd terminates, so it must recalculate the key when a mail
client returns to transmit another message.

To avoid the loss of session keys when an instance of smtpd dies, Postfix
may maintain an out of process session key cache as described in the
following section.

Configuring a TLS Session Key Cache

To head off the problem of computational load that TLS cryptography
can create, you need to configure smtpd processes to store session keys in
a database. After one smtpd stores the key, all smtpd processes have access to
the key, regardless of whether they just started or have been running for a
long time. A session-key cache significantly reduces CPU load.

To enable a session-key cache, set the smtpd_tls_session_cache_database
parameter, and enable the tlsmgr daemon. The main.cf parameters look
like this:

smtpd_tls_session_cache_database = sdbm:/etc/postfix/smtpd_scache
smtpd_tls_session_cache_timeout = 3600s

Session key caching requires concurvent write access to the key database. In Postfix, only
the SDBM database type supports this. All TLS-enabled Postfix installations recognize
this key type.

By default, all session keys in the database expire after one hour (3,600
seconds). RFC 2246 recommends a maximum of timeout period of 24 hours.
You can change the default behavior by setting a different value for smtpd_
tls_session_cache_timeout, specified in seconds.

Maintaining the TLS Session-Key Cache with tlsmgr

Postfix needs to actively maintain its TLS session-key cache database. For
security reasons, you must remove keys when they expire, and you also need
to keep the database from growing without bounds. The tlsmgr daemon that
is only present in TLS-capable Postfix installations performs these tasks. Here
are the specifics on what tlsmgr does:

e Assists in creating random numbers on systems that do not have built-in
random support

e Clears expired keys from the session cache database as defined by
smtpd_tls_session_cache_timeout

¢ Rebuilds the database specified by smtpd_tls_session_cache_database from
scratch when you restart Postfix

Using Transport Layer Security 291

292

CAUTION

Chapter 18

To run tlsmgr, you must verify that it is enabled in master.cf. On an
installation built from source, you shouldn’t need to change anything, but
some distributions disable the daemon in their Postfix packages, so it never
hurts to make sure that it is uncommented in your master.cf, as follows:

#
service type private unpriv chroot wakeup maxproc command + args
(yes) (yes) (yes) (never) (100)

= =

tlsmgr fifo - - n 300 1 tlsmgr

Never put the TLS session cache database in the chroot jail. A compromised session
cache database could be used lo trick mail clients into believing that they are communi-
cating with a safe mail server, allowing the clients lo transmit sensitive information.

You can run the tlsmgr daemon chrooted, because it opens the session-key database
before it changes its root directory, and it is therefore able to read and write to the
database while chrooted.

You must reload Postfix to start tlsmgr after making the appropriate
changes in master.cf.

Server-Side Measures to Secure the SMTP AUTH Handshake

SMTP AUTH may offer plaintext security mechanisms, such as PLAIN and
LOGIN. Certain mail clients, Microsoft Outlook and Outlook Express in
particular, can use only those mechanisms at present. Although users are
generally oblivious to security mechanisms, using plaintext for SMTP AUTH
tends to make administrators nervous, because anyone capable of reading
raw packets on the network can easily extract usernames and passwords.

You can protect against plaintext username and password submission by
offering SMTP AUTH only in conjunction with TLS.

Offering SMTP AUTH with TLS Only

Postfix provides the smtpd_tls_auth_only parameter to offer SMTP AUTH only
when an encrypted SMTP connection has been established. This parameter
is not enabled by default; to turn it on, add this line to main.cf and reload
your configuration:

smtpd_tls_auth_only = yes

Keep in mind that restricting SMTP AUTH to TLS sessions is a very strict
approach to banning plaintext mechanisms from an unencrypted SMTP
session, and it prohibits certain other (safer) mechanisms from regular
SMTP communication.

To verify your TLS enforcement, ensure that the Postfix server does not
offer SMTP AUTH for unencrypted sessions. Connect to your server on port
25, and start a handshake with EHLO yourFQDN as follows:

$ telnet mail.example.com 25
220 mail.example.com ESMTP Postfix
EHLO client.example.com
250-mail.example.com
250-PIPELINING

250-5IZE 10240000

250-VRFY

250-ETRN

250-STARTTLS

250 8BITMIME

QuIT

221 Bye

Notice that SMTP AUTH and its mechanisms do not appear in this

SMTP session, so step one of this configuration works.

Testing with an Encrypted Transport Layer

Now you should check to see whether SMTP AUTH is offered in a TLS
session. As you did when testing TLS earlier, run openssl s_client to connect
to your server, and then issue EHLO yourFQDN as in the earlier telnet session.
Although there is a lot more output this time, you should be able to pick out
the SMTP AUTH information at the end:

openssl s_client -starttls smtp -CApath /etc/postfix/certs/ -connect localhost:25
CONNECTED (00000003)

depth=1 /C=EX/ST=Examplia/L=Exampleton/0O=Certification Authority Example Inc./
CN=mail.example.com/emailAddress=postmaster@example.com

verify return:1

depth=0 /C=EX/ST=Examplia/L=Exampleton/O=Example Inc./0U=MX Services/CN=mail.example.com/
emailAddress=postmaster@example.com

verify return:1

Certificate chain

0 s:/C=EX/ST=Examplia/L=Exampleton/O=Example Inc./0U=MX Services/CN=mail.example.com/
emailAddress=postmaster@example.com

i:/C=EX/ST=Examplia/L=Exampleton/O=Certification Authority Example Inc./CN=mail.example.com/
emailAddress=postmaster@example.com
1 s:/C=EX/ST=Examplia/L=Exampleton/O=Certification Authority Example Inc./CN=mail.example.com/
emailAddress=postmaster@example.com

i:/C=EX/ST=Examplia/L=Exampleton/0O=Certification Authority Example Inc./CN=mail.example.com/
emailAddress=postmaster@example.com

Server certificate

Using Transport Layer Security 293

MIID97jCCA1+gAWIBAgIBATANBgkqhkiGIwOBAQQFADCBpjELMAKGA1UEBhMCRVEX
ETAPBgNVBAgTCEV4YW1wbG1hMRMWEQYDVQQHEwWpFeGFtcGx1dGouMSowKwYDVOOK
EyRDZXJ0aWZpY2FoaW9uIEF1dChvemloeSBFeGFtcGx1IELuYy4xGTAXBgNVBAMT
EG1haWwuZXhhbXBsZS5jb20xITAjBgkqhkiGOwOBCQEWFnBvc3RtYXNOZXIAZXhh
bXBsZ55jb20wHhcNMDMXMTASMIEYNTEzZWhcNMDOXMTA4MJEyNTE zWjCBpDE LMAKG
A1UEBhMCRVgXETAPBgNVBAGTCEV4YW1wbG1hMRMWEQYDVQQHEWp FeGFtcGx1dGou
MRUWEWYDVQQKEwxFeGFtcGx1IE1uYy4xFDASBgNVBASTCO1YIFNlcnZpY2VzMRkw
FwYDVQQDEXBtYW1sLmV4YW1wbGUuY29tMSUwIwYIKoZIhvcNAQkBFhZwb3NObWFz
dGVyQGV4YW1wbGUuY29tMIGFMAOGCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDL10HC
H71lyo2bcDbafEeTvsSEGepsleBAmMsB1ohWLnjUCEMESRthgeF/TMYUABiWhnXOb
2HOKOalzuyjOqLtFHy4Bh6ECNeMdTtrEPZ2kYw+/ARkaGIxwz INwfpzwuBhBr/gX
5FQstSG2cI4vMRkb2Vb9sq8aFneAMn+zH98v9QIDAQABo4IBMjCCAS4WCQYDVROT
BAIwADAsBglghkgBhvhCAQOEHXYdT3B1bINTTCBHZWS1cmFOZWOgQ2VydGlmaWNh
dGUwHQYDVROOBBYEF142nZvtTj1zDoZVKv8bSfkcRxd1MIHTBENVHSMEgCcswgciA
FABSrbf6wu8BGp57D1fb30SCWYOLOYGSpIGpMIGmMQswCOYDVOOGEWIFWDERMASG
A1UECBMIRXhhbXBsaWExEzARBgNVBACTCkV4YW1wbGVOb24xLTATBgNVBAOTIENL
cnRpZmljYXRpb24gQXVoaG9yaXR5IEV4YW1wbGUgSW5jLEZMBcGALIUEAXMQbWFp
bC51eGFtcGx1LmNvbTEIMCMGCSqGSIb3DQEJARYWCG9zdG1hc3R]1ckBleGFtcbxl
LmNvbYIBADANBgkqhkiG9wOBAQQFAAOBgODONDMeolWihd+TGQ+zIPF35RsZekYc2
0zayT4RatkiviGFKVRHVjr9iNgT3nywQonJzWVmgcms2LUBidtHhyY/VKLPhGCOM
VEfjvUbVgBaygkVoXmVSrFq7w+A42ejqLCP/+Hi601RFOFfI0IPiyZ1LVStiIDYF
12DRSFCKL4A+xw==

subject=/C=EX/ST=Examplia/L=Exampleton/0O=Example Inc./0U=MX Services/CN=mail.example.com/
emailAddress=postmaster@example.com

issuer=/C=EX/ST=Examplia/L=Exampleton/0O=Certification Authority Example Inc./
CN=mail.example.com/emailAddress=postmaster@example.com

Acceptable client certificate CA names

/C=EX/ST=Examplia/L=Exampleton/0=Certification Authority Example Inc./CN=mail.example.com/
emailAddress=postmaster@example.com

SSL handshake has read 2822 bytes and written 368 bytes
New, TLSv1/SSLv3, Cipher is DHE-RSA-AES256-SHA
Server public key is 1024 bit
SSL-Session:
Protocol : TLSvi
Cipher : DHE-RSA-AES256-SHA
Session-ID: 01DFCOOE443BBA8E4E9FE65C7F398702D7BB95367E62D9CBD12F217A97A9B8FC
Session-ID-ctx:
Master-Key:
EOF1C5F47787E3D9C9E236E38407555DE544C97BB9F81ACE3343C897DF8E50691AB432D03E2D79509F452DA7BB363CB8
Key-Arg : None
Start Time: 1071223541
Timeout : 300 (sec)
Verify return code: 0 (ok)

294 Chapter 18

220 mail.example.com ESMTP Postfix
EHLO client.example.com
250-mail.example.com

250-PIPELINING

250-SIZE 10240000

250-VRFY
250-ETRN

250-AUTH NTLM LOGIN PLAIN OTP DIGEST-MD5 CRAM-MD5
250-AUTH=NTLM LOGIN PLAIN OTP DIGEST-MD5 CRAM-MD5

250-XVERP
250 8BITMIME
ouIT

DONE

With the preceding boldface-italic AUTH output, you can see that
Postfix is indeed offering SMTP AUTH when encrypted. Now you can
configure mail clients to use plaintext mechanisms in SMTP AUTH together
with TLS.

Controlling SASL Mechanisms in TLS

A more sophisticated way to ban plaintext mechanisms in regular SMTP
communication is to use the smtpd_sasl_tls_security_options parameter. As
in the previous section, this parameter specifies that plaintext mechanisms
must be protected in a TLS session, but also that non-plaintext mechanisms
in unencrypted communication are permissible. A clever combination of
the SASL smtpd_sasl_security_options parameter with the smtpd_sasl_tls_
security_options parameter makes this possible:

smtpd_sasl security options = noanonymous, noplaintext
smtpd_sasl_tls_security options = noanonymous

The first line says not to allow anonymous and plaintext authentication,
but the second line overrides this, saying that plaintext is fine in a TLS
session.

Testing SASL with TLS

As when barring all SMTP AUTH mechanisms, the first thing to test in the
SASL configuration is to make sure Postfix does not offer the plaintext
mechanisms in an unencrypted session. Connect to your server on port 25,
issue EHLO yourFQDN, and observe the result:

$ telnet mail.example.com 25

220 mail.example.com ESMTP Postfix
EHLO client.example.com
250-mail.example.com

Using Transport Layer Security 295

250-PIPELINING

250-SIZE 10240000

250-VRFY

250-ETRN

250-STARTTLS

250-AUTH NTLM OTP DIGEST-MD5 CRAM-MD5
250-AUTH=NTLM OTP DIGEST-MD5 CRAM-MD5
250 8BITMIME

ouIT

221 Bye

Notice that the SMTP AUTH lines are missing the plaintext LOGIN
and PLAIN mechanisms, proving that the smtpd_sasl_security_options =
noanonymous, noplaintext setting works.

Testing the Encrypted Transport Layer

After verifying that the smtpd_sasl_security_options setting works, check that
your smtpd_sasl_tls_security options = noanonymous setting functions as
expected. Use openssl s_client to connect to your server, and issue EHLO
yourFQDN as before. The result should look like this:

openssl s_client -starttls smtp -CApath /etc/postfix/certs/ -connect localhost:25
CONNECTED (00000003)

depth=1 /C=EX/ST=Examplia/L=Exampleton/0O=Certification Authority Example Inc./
CN=mail.example.com/emailAddress=postmaster@example.com

verify return:1

depth=0 /C=EX/ST=Examplia/L=Exampleton/O=Example Inc./0U=MX Services/CN=mail.example.com/
emailAddress=postmaster@example.com

verify return:1

Certificate chain

0 s:/C=EX/ST=Examplia/L=Exampleton/O=Example Inc./0U=MX Services/CN=mail.example.com/
emailAddress=postmaster@example.com

i:/C=EX/ST=Examplia/L=Exampleton/0O=Certification Authority Example Inc./CN=mail.example.com/
emailAddress=postmaster@example.com
1 s:/C=EX/ST=Examplia/L=Exampleton/O=Certification Authority Example Inc./CN=mail.example.com/
emailAddress=postmaster@example.com

i:/C=EX/ST=Examplia/L=Exampleton/0O=Certification Authority Example Inc./CN=mail.example.com/
emailAddress=postmaster@example.com

Server certificate

MIID9jCCA1+gAwIBAGIBATANBgkghkiGIwOBAQQFADCBpjELMAKGATUEBhMCRVgX
ETAPBgNVBAgTCEV4YW1wbG1hMRMWEQYDVQQHEwWpFeGFtcGx1dG9uMSOwWKwYDVOQK
EyRDZXJ0aWZpY2FoaW9uIEF1dGhvcmloeSBFeGFtcGx1IELuYy4xGTAXBgNVBAMT
EG1haWwuZXhhbXBsZ55jb20xITAjBgkqhkiG9wOBCQEWFnBvc3RtYXNOZXIAZXhh
bXBsZ553jb20wHhcNMDMXMTASMIEYNTEZWhcNMDOXMTA4MJEyNTE zWjCBpDE LMAKG
A1UEBhMCRVgxXETAPBgNVBAgTCEV4YW1wbG1hMRMWEQYDVQOHEWpFeGFtcGx1dGou

296 Chapter 18

MRUWEWYDVQOQKEwxFeGFtcGx1IEluYy4xFDASBgNVBASTCO1YIFNLcnZpY2VzMRkw
FwYDVQQDExBtYW1sLmV4YW1wbGUuY29tMSUwIwYIKoZIhvcNAQkBFhZwb3NObWFz
dGVyQGV4YW1wbGUuY29tMIGFMAOGCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDL10HC
H71yo2bcDbafEeTvsSEGepsleBAmMsB1ohWLnjUcEmESRth9eF/TMYUABiWhnXOb
2HoKOalzuyjOqLtFHy4Bh6EcNeMdTtrEPZ2kYw+/ARkaGI 1wz INwfpzwuBhBx /X
5FQstSG2cI4vMRkb2Vb9sq8aFneAMn+zH98v9QIDAQAB04IBMjCCASAWCQYDVROT
BAIwADAsBglghkgBhvhCAQOEHXYdT3B1bINTTCBHZWS1cmFOZWOg02VydGlmaWNh
dGUwWHQYDVROOBBYEF142nZvtTjJzDoZVKv8bStkcRxd1MIHTBgNVHSMEgCswgciA
FABSTbf6wuBBGp57D1fb30SCWYOLoYGSspIGpMIGmMQswCQYDVQQGEWIFWDERMABG
AIUECBMIRXhhbXBsaWExEzARBgNVBACTCkV4YW1wbGVOb24x L TArBgNVBACTIENL
cnRpZmljYXRpb24g0XV0aG9yaXR5IEV4AYW1wbGUgSWSjLFEZMBcGALUEAXMQbWFp
bC51eGFtcGx1LmNvbTEIMCMGCSqGSIb3DQEJARYWcG9zdG1he3R1ckBleGFteGx1
LmNvbYIBADANBgkqhkiGowoBAQQFAAOBEODONDMeoWihd+TGQ+zIPF35RsZekYc2
0zayT4RatkiviGFKVRHVjr9iNgT3nywQonlzWVmgem52LUBidtHhyY/VKLPhGCQM
VFjvUbVgBaygkVoXmVSy Fq7w+A42ejqLCP/+Hi601RFOFF10IPiyZ1LVStiIDYF
12DRSFCKL4A+xwW==

subject=/C=EX/ST=Examplia/L=Exampleton/0=Example Inc./0U=MX Services/CN=mail.example.com/
emailAddress=postmaster@example.com

issuer=/C=EX/ST=Examplia/L=Exampleton/0O=Certification Authority Example Inc./
CN=mail.example.com/emailAddress=postmaster@example.com

Acceptable client certificate CA names

/C=EX/ST=Examplia/L=Exampleton/0O=Certification Authority Example Inc./CN=mail.example.com/
emailAddress=postmaster@example.com

SSL handshake has read 2822 bytes and written 368 bytes
New, TLSv1/SSLv3, Cipher is DHE-RSA-AES256-SHA
Server public key is 1024 bit
SSL-Session:
Protocol : TLSvi
Cipher : DHE-RSA-AES256-SHA
Session-ID: 01DFCOOE443BBASE4E9FE65C7F398702D7BB95367E62D9CBD12F217A97A9B8FC
Session-ID-ctx:
Master-Key:
EOF1C5F47787E3D9C9E236E38407555DE544C97BBOF81ACE3343C897DFBE50691AB432D03E2D79509F452DA7BB363CB8
Key-Arg : None
Start Time: 1071223541
Timeout : 300 (sec)
Verify return code: 0 (ok)
220 mail.example.com ESMTP Postfix
EHLO client.example.com
250-mail.example.com
250-PIPELINING
250-SIZE 10240000
250-VRFY
250-ETRN

Using Transport Layer Security 297

250-AUTH NTLM LOGIN PLAIN OTP DIGEST-MD5 CRAM-MD5
250-AUTH=NTLM LOGIN PLAIN OTP DIGEST-MD5 CRAM-MD5

250-XVERP
250 8BITMIME

QUIT
DONE

298 Chapter 18

You can see that in a TLS session, Postfix offers the plaintext LOGIN and
PLAIN mechanisms, proving that the smtpd_sasl_tls_security options =
noanonymous setting works. You can now proceed to configure mail clients to
use plaintext mechanisms in SMTP AUTH together with TLS.

Server-Side Certificate-Based Relaying

Postfix’s ability to permit relaying based on client certificates (see Figure
18-2) is an alternative to SMTP AUTH-based relaying. This is useful in a
network where you cannot (or do not want to) use SMTP AUTH, or when
you want to simplify the process of relaying and encrypting the transport
layer by combining both processes into a single step.

Public client certificates

Figure 18-2: TLS for certificate-based relaying

The only drawback to this method is that the only known mail GUI
that supports this kind of functionality is the Netscape/Mozilla mail client.
In spite of this limitation, however, this approach is useful in a large network
that has Postfix installations at several different locations, and when these
locations have only dial-up access to the Internet and are limited to dynamic
IP addresses. In this situation, it makes sense to have the dial-up Postfix
servers relay their outgoing messages to a Postfix server that has a static IP
address, using certificate-based relaying to make sure that the messages
come from one of the dial-up servers and not some random third party.
This approach also simplifies server setup, makes Postfix more secure by
excluding SMTP AUTH, and protects the transport of in-house messages.

NOTE

NOTE

NOTE

As time goes on, fewer mail servers are accepting mail from dial-up and DSL lines,
because lots of spam originates from those systems’ IP addresses. Special DNS-based
Blackhole Lists (DNSBLs) called Dial-Up User Lists (DULs) now ban complete subnets
known to be used by dial-up machines.

You need to perform the following steps for the server configuration:

1. Configure Postfix to ask for client certificates.

2. Configure Postfix to permit relaying for client certificates.

Certificate-based relaying requirves you to configure both server and client-side TLS.
This section explains the server-side configuration; youw'll see the client-side configura-
tion later in this chapter.

Configuring Postfix to Ask for Client Certificates

The first step in enabling certificate-based relaying is to instruct Postfix to ask
explicitly for client certificates. This is necessary because mail clients usually
do not automatically offer their certificates. The smtpd_tls_ask_ccert
parameter takes care of this (it’s not enabled by default):

smtpd_tls_ask_ccert = yes

This parameter is also useful for debugging, and you can always leave it
on because the information added to the header of each message sent over
TLS does not create any security risks.

If no certificate is available, Netscape’s mail client either complains or offers a number
of client certificates from which to choose. This behavior is annoying, so this option

is off by default. However, your SMTP server needs the certificate if you want to use
certificate-based relaying.

Configuring Postfix to Permit Relaying for Client Certificates

The Postfix TLS patch includes two additional restrictions that can control
relaying with the smtpd_recipient_restrictions parameter. How you set up the
restriction depends on your CA’s certificate:
Client certificate—based relaying
You can build a map of client certificates that may relay mail through
Postfix. This is the safe approach if your client certificates stem from
more than one (official) CA.
Certification authority-based relaying
You can choose to permit relaying for all mail clients with certificates
signed by your own CA, if you run your own CA and have full control
over the certificates.

These two options are described in the following two sections.

Using Transport Layer Security 299

300

NOTE

mP

Chapter 18

(ient Certificate—Based Relaying

If your setup requires that mail clients relay using certificates signed by one
or more official CAs, you need to go through these steps:

Create a list of client certificate fingerprints.

o

Convert the list to a database.

Permit those clients to relay.

The first thing you need to do is collect the public certificates from the
mail clients that are allowed to relay. For each certificate, you need to extract
the MD5 fingerprint.

If you don’t want to do this manually, download and run add_ccerts_to_relay_
clientcerts.sh. This script caleulates the MD5 fingerprint, copies it to /etc/postfix/
relay clientcerts, and builds an appropriate map from the contents of this file.

Let’s say that you have a client certificate named client_public_cert.pem.
You can extract the MD5 fingerprint with this command:
openssl x509 -noout -fingerprint -in client_public_cert.pem

The output should look something like this:

MDs Fingerprint=00:8B:02:30:9D:18:F4:81:5D:2F:48:E4:5B:17:82:A7

The fingerprint is the string of hexadecimal numbers and colons. Add
the fingerprint, along with the client hostname, to the /etc/postfix/
relay_clientcerts file, like this:

00:8B:02:30:9D:18:F4:81:5D:2F:48:E4:5B:17:82:A7 client_1.example.com
18:F4:81:5D:2F:82:A7:48:E4:5B:17:00:8B:02:30:9D client_2.example.org

Although Postfix’s TLS implementation only requires the fingerprint,
/etc/postfix/relay_clientcerts is a typical Postfix map, so you need two items
per line. You can choose any string you want as the right-hand side; in this
example it’s the client’s fully qualified domain name. Using the FQDN
makes it easier to find and identify the fingerprint in the map.

You could also add the expiry date of the client certificate to the right side to speed up or
automate the process of finding expired certificates.

After adding the fingerprint, convert the relay_clientcerts file to a
Postfix map with postmap:

postmap hash:/etc/postfix/relay_clientcerts

This command creates /etc/postfix/relay clientcerts.db, and you're
finished with the list creation.

CAUTION

Now you need to add a parameter to main.cf that tells Postfix where to
find the client map:

relay clientcerts = hash:/etc/postfix/relay clientcerts

Finally, expand the relay permissions by adding the permit_tls_clientcerts
parameter to smtpd_recipient_restrictions:

smtpd_recipient restrictions =

permit tls clientcerts

Remember that the order of items in smtpd_recipient_restrictions is
important. Make sure permit_tls_clientcerts appears early in your restrictions.

That’s all you need to do to configure this version of certificate-based
relaying. Reload Postfix to make the changes take effect.

Certification Authority—Based Relaying

If you want to relay only on the basis of a valid certificate, you must have

full control over the client certificates. You must run your own certification
authority (CA) and sign client certificates by yourself, and furthermore,
your CA needs to be the only one that Postfix knows about. This is absolutely
necessary, because with this feature, the only criterion that Postfix uses is
successful certificate validation.

If you use an official CA certificate or even a list of official CA certificates, any client
on the Internet could get a certificate signed by one of those certification authorities,
and would therefore be allowed to relay—your server would become an open relay.

The relaying methods discussed earlier require you to build and main-
tain a list of client certificates that may relay; the advantage here is that you
need just one CA certificate to make a decision.

To make Postfix relay for clients with certificates signed by your private
CA, first reduce the list of CAs down to one, your own public CA certificate.
As discussed earlier, the smtpd_tls_CAfile parameter controls the CA file, so
your parameter line would look something like this in main.cf:

smtpd_tls_CAfile = /usr/share/ssl/certs/cacert.pem

After you're sure that Postfix recognizes only your own certificate, add
the permit_tls_all clientcerts parameter to smtpd_recipient_restrictions:

smtpd_recipient_restrictions =

permit_tls all clientcerts

Finally, reload Postfix to make the changes effective.

Using Transport Layer Security 301

Tightening the TLS Server

So far, you’ve seen how to configure Postfix to offer and process Transport
Layer Security. This section shows how to enforce and reject TLS when the
client does not submit a certificate.

CAUTION Be careful when using the following features, because they can break your mail system if
used in an improper environmend.

Enforcing TLS

You can force all clients to use TLS. This feature is handy in a private
network where you need to be sure that all message traffic is encrypted (for
example, in a large company with distributed locations). To do so, set the
smtpd_enforce_tls parameter in your main.cf file to yes (the default is no), and
reload Postfix:

smtpd_enforce tls = yes

CAUTION RIFC 2487 states, “A publicly-referenced SMTP server MUST NOT require use of
the STARTTLS extension in order to deliver mail locally. This rule prevents the
STARTTLS extension from damaging the interoperabilily of the Internet’s SMTP
infrastructure.”

Requiring TLS for every client on a public mail server is a bad idea in general,
because it locks oul clients that cannot use TLS or are not configured to do so. If you
require TLS on a public mail server, expect that a large proportion of email will not
be delivered to your network.

Requiring a Client Certificate

You can take TLS enforcement one step further and allow only clients that
submit certificates. With this option, if a client does not send a certificate,
Postfix refuses to go through with TLS. To make it work, add the smtpd_t1s_
req_ccert parameter to main.cf as follows, and reload Postfix:

smtpd tls req ccert = yes

NOTE This setting does not keep a client from using unencrypted SMTP communication
unless you enforce TLS with the smtpd_enforce_tls parameter described earlier. Use
both parameters for a very strict policy.

Client-Side TLS

Client-side TLS is used when Postfix is acting as a mail client that connects to
mail servers that support TLS (see Figure 18-3). Depending on the config-
uration, Postfix can make (selective) use of TLS by sending SMTP AUTH
credentials with plaintext mechanisms in TLS to acquire relay permission,
or by presenting its own client certificate to be allowed relay access.

302 Chapter 18

Plaintext transport Mail client

XXX Encrypted fransport layer
o=

Figure 18-3: TLS for the Postfix mail client

Basic Client Configuration

You need to set three parameters in main.cf to enable basic TLS support for
the Postfix mail client. You can also tweak an additional parameter to aid in
debugging TLS sessions. These are the steps you need to go through:

1. Enable client-side TLS.

2. Configure Postfix to verify the server certificate.
3. Connect Postfix to a random source generator.
4. Log clientside TLS activity.

Enabling Client-Side TLS

All TLS-capable Postfix installations have clientside TLS, but they do not
enable it by default. Postfix doesn’t make use of STARTTLS with any server
(even if the server enforces TLS) until you add the following parameter
setting to main.cf on the client:

smtp_use_tls = yes

With this parameter in place, the Postfix smtp daemon initiates
STARTTLS in the SMTP dialog if the mail server on the other side of a
connection offers STARTTLS. However, enabling client-side TLS isn’t
enough to make the whole process work. The Postfix client doesn’t yet know
where to find CA certificates that it will need to verify the server certificate.

Verifying the Server Certificate

When the Postfix SMTP client starts TLS with a mail server, it attempts to
validate the certificate that the server presents in the session. Postfix checks
the cryptographic signature that a CA adds to the server’s certificate by using

Using Transpor! Llayer Security 303

304

NOTE

NOTE

Chapter 18

the public key of the CA certificate. Therefore, your Postfix installation must
have a repository of CA certificates where it can look for cryptographic
signatures and compare them.

As mentioned in Chapter 17, OpenSSL does not have a central root store for CA
certificates. Therefore, you need to ereate a new root stove. The configuration described
shortly uses ca-bundle. crt, which is explained in the section “Configuring the Postfix
Certificate Root Store.” You may also want to ereate your own root store file, also in
this section.

Like the Postfix server, the client can use two different CA certificate
storage types: a file with all CA certificates in a single file, or a directory
containing many files, each containing a CA certificate.

For a chrooted mail client, you should keep all CA certificates in a single
file, because Postfix reads the files at startup before running the chroot
operation.

If you don’t use chroot, you may as well keep the CA certificates in a
directory, because it’s easier to maintain. This is especially handy if you add
CA certificates regularly, because you don’t need to restart Postfix whenever
you add a new CA certificate. However, don't use the directory approach for
chrooted setups, because you will need to keep the certificates in the chroot
jail, defeating the purpose chroot in the first place (keeping sensitive
information away from the jail).

As with the TLS server configuration, you can use both approaches at once. Set both of
the parameters in the following sections, and separate some CA certificates from others.
When Postfix searches for a CA certificate, it veads the file first, then turns to the direc-
tory if it can't find the certificate in the file.

Concatenating All CA Certificates into a Single File

The simplest approach (and probably also the one that gets the most
mileage) is to store all CA certificates in one file. As mentioned earlier, if you
happen to run Apache with mod_ssl, you already have such a file, called ca-
bundle.crt. Find it by executing locate ca-bundle.crt on the command line:

$ locate ca-bundle.crt
/usr/share/ssl/certs/ca-bundle.crt

Now tell the Postfix client to use this file by setting the smtp_tls_CAfile
parameter to the ca-bundle.crt path in main.cf, and then reload Postfix:

smtp_tls CAfile = /usr/share/ssl/certs/ca-bundle.crt

NOTE

If you run your own certification authority, add your CA certificate to this root store
with a command like this:

cat /usr/local/ssl/misc/demoCA/cacert.pem >> /usr/share/ssl/certs/ca-
bundle.crt

If your CA certificate is a link in a chain of certificates, add all of the CA
certificates from your CA certificate wp to the root CA certificate in the certificate
chain.

Storing All CA Certificates in a Directory

For a directory-based approach to CA certificate access, set the smtp_tls_
CApath parameter to a directory containing certificate files. The first thing
you probably need to do with a new Postfix installation is create a directory
for the certificate files:

mkdir /etc/postfix/certs

Now put all of the CA certificates that you need for your setup into this
directory, and build an index table for fast certificate lookup. Create the
index with c_rehash, a program that comes with OpenSSL. Running this
command builds the index and makes symbolic links to the CA certificates:

c_rehash /etc/postfix/certs/

Doing /etc/postfix/certs/

cacert.pem => e0dc2d06.0

WARNING: postfix_private_key.pem does not contain a certificate or CRL: skipping
postfix_public cert.pem => 6df723a3.0

NOTE

Don't forget to run c_rehash each time you add a new CA certificate.
Once you've performed these steps, tell Postfix to use this directory as its

CA root store, and then reload your configuration:

smtp_tls CApath = /etc/postfix/certs

Connecting the Postfix Client to a Random Source Generator

To properly initialize the encryption, you need to connect Postfix to a
random number source. See the discussion of the tls_random_source
parameter in the earlier “Connecting Postfix to a Random Source
Generator” section. The process is the same for the client and the server.

Using Transport Layer Security 305

306

Chapter 18

Logging Client-Side TLS Activity

Before you fire up Postfix to test your TLS client, increase the smtp_tls_
loglevel parameter setting to 2 so that you can see significant TLS events
(the default is 0):

smtp_tls_loglevel = 2

See the discussion of the smtpd_tls_loglevel parameter in the earlier sec-
tion “Increasing the TLS Log Level” for the meanings of the various log levels.

Testing Basic Client Functionality

To test basic client-side TLS, you need to perform only two steps:

1. Check the log file to see if the Postfix client detected any errors.

2. Send mail to a TLS-enabled server.

Checking the Log File for Errors

Run an egrep command to pick out TLS problems in the Postfix log file:
$ egrep '(reject|error|warning|fatal|panic):' /var/log/maillog

If there are any TLS-related glitches that Postfix can detect, this
command should catch them. There shouldn’t be any errors pointing to
TLS-related issues, but if there are problems, check over your configuration
to see if you mistyped something, and make sure that Postfix has read
permission for the certificates.

Sending Mail to a TLS Server
Now try sending a message to a TLS-enabled mail server to see if the Postfix
client uses TLS.

If you don’t know of any TLS servers, Lutz Janicke, developer of the TLS
patch, has a public mail server that you can use for testing. Send a message
to postfix_tls-bounce@servoi.aet.tu-cottbus.de, and the server should send
the mail back to you, including headers added to your original message that
indicate whether the message was transmitted over TLS. The header should
look something like this:

Received: from mail.state-of-mind.de (mail.state-of-mind.de [212.14.92.89])
(using TLSv1 with cipher EDH-RSA-DES-CBC3-SHA (168/168 bits))
(Client did not present a certificate)
by servoi.aet.tu-cottbus.de (Postfix) with ESMTP id 74C6B2330
for <postfix_tls-bounce@servoi.aet.tu-cottbus.de>; Wed, 10 Dec 2003
23:50:45 +0100 (MET)

NOTE

Selective TLS Use

With selective TLS client configuration, you can enforce a security policy
with certain servers but also keep messages from going into a black hole if
a mail server that offers STARTTLS is somehow misconfigured.

This happens quile often with Lotus Noles servers.

You'll perform three steps:

1. Enable selective TLS in your Postfix configuration.
2. Build a policy map that tells the smtp client when to use TLS.

3. Configure Postfix to note when servers offer TLS.

Enabling Selective TLS

Turn on selective client-side TLS in main.cf by setting the smtp_tls_per_site
parameter to a policy map. In this example, the map is /etc/postfix/tls_
per_site:

smtp_tls per site = hash:/etc/postfix/tls per site

Building the TLS Policy Map

The TLS policy map has the same style as any other Postfix map; each line
represents an entry with a key-value pair. Put the host or domain on the left
side (the key) and the TLS policy on the right side (the value). The possible
policies for the Postfix SMTP client are as follows:

NONE
Disables client-side TLS.

MAY
Allows the client to try TLS if the remote server offers STARTTLS, but it
doesn’t have to if it doesn’t want to.

MUST
Forces the Postfix client to use TLS when this server offers TLS with
STARTTLS. Furthermore, Postfix checks the server certificate’s
CommonName parameter against the server’s fully qualified domain name.

MUST_NOPEERMATCH

A lesser version of the MUST policy. The Postfix client responds to START-
TLS and verifies the server’s certificate, but it ignores any differences
between CommonName and the FQDN.

Using Transport Layer Security 307

NOTE [fyou configure Postfix to use a TLS policy map, the settings in the map will always
override yourmain.cf settings. If you turned off TLS, it will use TLS for those hosts
Jound in the map. Vice versa, if you turned TLS on in main.cf and the host cannot
be found in the policy map, it will still use TLS.

Start the map with a file named /etc/postfix/tls_per_site that looks
something like this:

dom.ain NONE
host.dom.ain MAY
important.host MUST

some.host.dom.ain MUST_NOPEERMATCH

After writing this ASCII map, build the hash map with the postmap
command to make it available to Postfix:

postmap hash:/etc/postfix/tls_per_site

Identifying TLS Servers

Finding the servers that offer TLS is useful not only when debugging a TLS
session, but also when you configure the selective TLS feature in Postfix. Set
the smtp_tls_note_starttls_offer parameter to yes in your main.cf file:

smtp_tls_note_starttls_offer = yes

Now, as soon as your Postfix client connects to a mail server that offers
STARTTLS, the client logs the server name to the mail log as follows:

client postfix/smtp[1504]: Host offered STARTTLS: [mail.example.com]

With this final configuration setting, your TLS client is ready to go.

Client Performance Tuning

The same performance considerations described for the Postfix TLS server
in the section “Server Performance Tuning” apply to the TLS client. The
client uses the same tlsmgr daemon described in that section to cache session
keys for the client. However, because this is the client, the configuration
parameter names are slightly different; change the smtpd to smtp.

Therefore, to enable caching, go through all of the steps described in
“Server Performance Tuning,” but use smtp_tls_session_cache_database and
smtp_tls_session_cache_timeout in your main.cf instead:

smtp_tls session_cache database = sdbm:/etc/postfix/smtp_scache
smtp_tls_session_cache_timeout = 3600s

308 Chapter 18

NOTE

Securing Client SMTP AUTH

In the section “Server-Side Measures to Secure the SMTP AUTH Handshake,”
you saw how to secure SMTP AUTH communication on the server side with
TLS. This section shows you how to do it on the client side. Just to recap,
you do not want your client to send your username and password with the
SMTP AUTH plaintext mechanisms over an unencrypted connection. If
you have to use the plaintext mechanisms, the client should start a TLS
session first.

With a combination of the smtp_sasl_security_options parameter for
unencrypted connections and smtp_sasl_tls_security options for TLS
sessions, you can lock down SMTP AUTH:

smtp_sasl_security_options = noanonymous, noplaintext
smtp_sasl_tls_security options = noanonymous

The first rule forbids anonymous and plaintext authentication
mechanisms over an unencrypted transport layer, and the second allows
plaintext mechanisms when talking to the server with TLS.

Client-Side Certificate-Based Relaying

Certificate-based relaying is a secure way of allowing servers to relay messages
for clients, even if the clients aren’t on a network that the server knows
about. You saw the server configuration in the section “Server-Side
Certificate-Based Relaying.” However, the client configuration isn’t like the
server’s relaying features; it’s more like setting up the server itself, because
you have to provide paths to the certificate that the client presents to the
kernel and to the key that the client will use for initiating the connection.

Configuring Paths to the Postfix Client Certificate and Key

To make the Postfix client present a certificate to the server when a TLS
session starts, you need to set the smtp_tls_cert_file parameter to the client
certificate and the smtp_tls_key file parameter to the client key in main.cf.
Here’s an example:

smtp_tls cert file = /etc/postfix/certs/postfix public cert.pem
smtp_tls_key file = /etc/postfix/certs/postfix_private_key.pem

If you also configured server-side TLS in your Postfix installation, reuse the server’s cer-
tificate and key unless you want your Posifix server and client to have different “digital
identities.”

Now, reload your Postfix configuration and start testing.

Using Transport Layer Security 309

310

NOTE

Chapter 18

Testing Client-Side Certificate-Based Relaying

Testing involves three steps:

1. Check the log file for obvious errors.
2. Verify that the client sends its certificate.

3. Verify that the client can relay based on its certificate.

Checking the Log File

Checking the log files is a matter of running the egrep command that you've
seen earlier in this chapter:

$ egrep '(reject|error|warning|fatal|panic):' /var/log/maillog

If you get any errors, the usual advice applies: check your configuration
files for typos, and make sure the client has read permission for the certificates.

Verifying that the Client Certificate Is Sent

To get proof that the client sends its certificate, you have to send a mail to a
TLS-enabled server and see whether it accepts the client certificate. If you
send a client certificate to a Postfix mail server that has smtpd_tls_received_
header = yes set, text like the following appears in your headers:

Received: from client.example.com (client.example.com [172.16.0.3])
(using TLSv1 with cipher EDH-RSA-DES-CBC3-SHA (168/168 bits))
(Client CN "client.example.com", Issuer "mail.example.com" (verified OK))
by mail.example.com (Postfix) with ESMTP id 63AC77247
for <tls-bounce@mail.example.com>; Thu, 11 Dec 2003 19:48:38 +0100 (CET)

The third line states that the mail client Client sent a certificate to the
mail server. The certificate was signed by the mail.example.com CA, and the
server was able to verify this.

If things don’t work as expected, and you don’t know if it is the client or server that is
causing problems, send a message to postfix_tls-bounce@servoi.aet.tu-cottbus.de.
As described earlier; this service bounces the message back to you with TLS debugging
enabled.

Verifying that the Client Can Relay with Its Certificate

Now test your client’s certificate-based relaying capabilities by sending a
message through a TLS server. Make sure that the server relays messages
based on your certificate with the following criteria.

CAUTION

NOTE

CAUTION

1. Make sure your client is not part of the server’s network, or any network
that the server grants relay access to by other criteria, such as mynetworks.

ro

Make sure your client does not use any features such as SMTP AUTH.

3. Make sure the recipient is not in the relayhosts list of final destinations.

Tightening Client-Side TLS

You can force the client to use TLS, or to take an even stricter stance,
communicating with the server only if the client can verify the server’s peer
name. Enforcing TLS communication on the client side is useful only when
you can control the servers with which the client communicates.

Misconfiguring these features can break your outgoing mail system.

The following prerequisites must hold in order to force TLS
communication:

The server must offer TLS.

N

The values for CommonName in the certificate must match the server’s fully
qualified domain name.

3. The client must be able to verify the server’s certificate with the CA’s
signature.

If even one of these conditions is not met, the client will not send the
message to the server. Instead, the client holds the message in its queue and
sends a 4xx error notice to the mail log.

Enforcing the SMTP client to use TLS is useful in private networks and when you
know that your client relays all messages over one server.

To force clientside TLS, set the smtp_enforce_tls parameter in your
main.cf as follows:

smtp_enforce_tls = yes

If this mode is too strict for everyday use, you can allow transmission if
the CommonName in the server’s certificate does not match its fully qualified
domain name. Do this by setting the smtp_tls_enforce_peername to no (this

option is normally enabled when you set smtp_enforce_tls):

smtp_tls_enforce_peername = no

This option presents the danger of a man-in-the-middle attack.

Using Transport Layer Security n

A COMPANY MAIL SERVER

%'/ This chapter shows you how to build a
% complete mail system based on Postfix,
Cyrus SASL, Courier maildrop, and
Courier IMAP. These components will get
conﬁguration and authentication data from an
OpenLDAP server that provides directory services.

We will go from a basic setup to an advanced setup. The basic setup will
connect all applications to the central LDAP server. Once we got this going,
we will make the system more complex. The advanced setup will add
transport layer security wherever possible and will show you how to offer
SMTP authentication based on LDAP queries.

You should have a profound understanding of LDAP schemas and
OpenLDAP before you start to implement the company mail server we
describe in this chapter. If you haven’t dealt with OpenLDAP before, the
Open.DAP Administrator’s Guide, http://www.openldap.org/doc/admin22, is a
good starting point for reading.

Conceptual Overview

Figure 19-1 gives you an overview of the applications you will need to deal
with in this chapter and how they will be linked to each other. You can see
OpenLDAP is in the center of all the services. The application servers work as

follows:

Postfix hands authentication data to the LDAP server when mail clients
seek to relay using SMTP AUTH. In addition, Postfix queries the LDAP
server for local user and alias information when incoming mail arrives.
Upon accepting a message, Postfix hands it to Courier maildrop.
Courier maildrop is responsible for local delivery. It asks the LDAP server
for the mailbox location, and it also looks for filter rules (for example, for
placing messages marked as spam into a subfolder named . spam).

The user connects to the Courier IMAP server to retrieve mail. This
server queries the LDAP server for the user’s credentials. LDAP also tells
Courier where to find the mailbox and which UID and GID to use when
accessing it.

Authenticate, ks Receive email,
. | Mail client S —
send email manage email
Server] E " Validate _E Y
| recipients, ! e .
. authenticate ? Authenticate Courier
Postfix ""@ senders, § recipients IMAP
y verify sender] SN ——f— 77T

i address |

Server Server Server
cerlificate certificate certificate
Transport
to local
delivery agent Get mailbox
location,
get user specific
permissions
A
Courier Deliver to Virtual Access mailbox,
maildrop mailbox mailbox manage email
|
Get rules for Filter
incoming email rules

Figure 19-1: Architecture of a company mail server

314

Chapter 19

The LDAP Directory Structure

NOTE

NOTE

The first thing you need to do to build the mail system is design your LDAP
directory tree. This can be a difficult task; one reason why LDAP isn’t more

widespread is that it is daunting to design a directory from scratch. There are
three key things to consider when you draw up the structure, schemata use,

and attributes:

¢ The purpose of the directory
¢ Your organizational structure

¢ The requirements of the servers that use the LDAP directory

The primary purpose of the directory in this chapter is to show you how
Postfix and other servers query an LDAP server. We will keep the structure as
simple as possible so that you can focus on application configuration instead
of getting lost in a directory quagmire.

We’ll build the mail system in this chapter for an organization named
Example Inc. This company got its start selling rocks and has grown large
enough to have various departments. Among these are an IT department
(run by a somewhat childish administrator named Bamm Bamm), a sales
department, and a purchasing department. To keep it simple, we’ll use just
these three departments.

The directory service will provide Postfix, Cyrus SASL, Courier maildrop,
and Courier IMAP with user and configuration data. This example will be
based on the authldap.schema that comes with Courier IMAP because the
other servers can use it without a problem.

If you don’t want to build your own divectory, you can download an LDIF (LDAP
Data Interchange Format) dump of Example Inc. from the Book of Postfix website at
http://www.postfix-book.com.

Figure 19-2 shows the directory tree, which starts at the node named
dc=example,dc=com and spreads into two large branches.

The branch to the left contains authentication accounts for servers; we’ll
look at those later in the “Advanced Configuration” section when securing
the LDAP data and connection.

The branch on the right is called ou=people,dc=example,dc=com. It has
subnodes, such as ou=it,ou=people,dc=example,dc=com, that represent the
organizational structure. As you go further down, you’ll encounter more
subnodes that hold user objects filled with attributes and values that hold all
the information required to provide all user-related data for a complete mail
system.

You can do a lot more with a divectory service. For example, you can add Postfix server
configuration values for mydestination, relayhost, virtual domain, and so on.

A Company Mail Server 315

316

Chapter 19

dc=example,dc=com

ou=people

ou:it,ou=people,dc=example,dc=com ou=sales ou=purchasing
objectClass: CourierMailAlias
objectClass: organizationalUnit
maildrop: it@example.com

mail: bamm@example.com

dn: uid=bammbamm,ou=it,ou=people,dc=example,dc=com
uid: bammbamm

givenName: Bamm

sn: Bamm

cn: Bamm Bamm

userPassword: bamm_secret
homeDirectory: /var/spool/mail/bammbamm
mailbox: /var/spool/mail/bammbamm
quota: 51200000

mail: bamm@example.com

maildrop: postmaster@example.com
maildrop: bamm.bamm@example.com
maildrop: abuse@example.com
objectClass: CourierMailAlias
objectClass: CourierMailAccount
objectClass: inetOrgPerson

uidNumber: 1001

gidNumber: 1001

Figure 19-2: Organ izational branch of Exampn'e Inc.

Choosing Attributes in a Postfix Schema

If you are an LDAP novice and were hoping for an easy solution, we have
some bad news. There is no Postfix LDAP schema to drop in, fill with data,
and let roll. You may be even more discouraged to hear that this is inten-
tional, but there’s a good reason for this. Nearly everything that Postfix
needs for this solution comes in other schemata, such as the core.schema in
OpenLLDAP, or with applications like Courier IMAP, which comes with its
own authldap.schema.

To choose the right schemata and attributes for your servers, you need to
examine the requirements of the servers. For example, if Postfix uses LDAP
for maps, you can set up the following entities.

Destinations, networks, and hosts

Destinations, networks, and hosts are represented by hostnames and IP
addresses. Postfix looks these up to determine which domains it should
accept mail and allow relay access for, and it may also use them when it
applies host and network restrictions.

Your directory must contain attributes that describe hosts and
networks and that perhaps allow for multivalue addition in a single
LDAP object. You'll find appropriate attributes in network-related
schemata, such as the CORE or NIS schema examples.

Recipients and senders

When Postfix looks up recipients and senders, it looks for username@host-
name by default. There are many available schemata containing attributes
like this. For example, you could look at core.schema and other mail-
related schemata like the ones for Sendmail or qmail. However, don’t
forget the delivery side of the mail system. Many POP and IMAP servers
come with their own schemata, all with attributes for defining sender
and recipient addresses.

Aliases

A user may have more than one alias. The attribute you choose must
allow for multiple addition to an object. Most mail-related schemata have
an alias attribute. The schema that you plan to use for sender and recipi-
ent addresses is probably appropriate.

Lists
Lists consist of a single alias entry and multiple recipient addresses. If
you have a schema with both attributes, you have everything that you
need for a list.

Before you undertake to write your own Postfix schema you should rather
adapt the schemata for other servers to Postfix. This approach lessens the load
and complexity of your LDAP service, and it gives you more flexibility when
expanding your directory or the servers that use it.

As mentioned before, this chapter’s example is based primarily on the
authldap.schema that comes with Courier IMAP because it has almost every-
thing necessary for a complete directory.

Branch Design

We will split the directory in two major branches (see Figure 19-2). The left
branch will contain application accounts, which we will use later in the
“Advanced Configuration” section to implement access control for
applications querying the directory.

The right branch will contain user-related information. It will be split
into smaller subunits according to the department structure. We will use the
organizationalUnit object to create the subunits, and later we will configure
the organizationalUnit objects to hold information for simple mailing lists.

With the branches in place, we can turn to creating an actual user object.

A Company Mail Server 317

Building User Objects

You can build user objects from three object classes, inetOrgPerson,
CourierMailAccount, and CourierMailAlias, which you can find in
inetorgperson.schema, authldap.schema (Courier IMAP), and nis.schema.
Usage of the nis.schema is necessary because authlap.schema depends
on some of its attributes.

Using attributes from all three schemata, we will describe a single
user object. A complete object for Bamm Bamm in the IT department as
we use it in this chapter looks like this:

dn: uid=bammbamm,ou=it,ou=people,dc=example,dc=com
uid: bammbamm

givenName: Bamm

sn: Bamm

cn: Bamm Bamm

userPassword: bamm_secret

homeDirectory: /var/spool/mail/bammbamm
mailbox: /var/spool/mail/bammbamm/Maildir
quota: 512000005

mail: bamm@example.com

maildrop: postmaster@example.com
maildrop: bamm.bamm@example.com
maildrop: abuse@example.com

objectClass: CourierMailAlias
objectClass: CourierMailAccount
objectClass: inetOrgPerson

uidNumber: 1003

gidNumber: 1003

You may wonder where all of these attributes came from. The following
sections explain their origins.

Creating the Sender and Recipient

You need to create an object to carry all user related attributes and values.
We’ll use inetorgperson.schema, because it provides extra attributes that
allow for a company-wide address book.

You can create a unique user object with the uid attribute.
inetorgperson.schema also gives you access to the mail attribute, which
you can use for local recipient addresses and valid sender addresses.
These two attributes look like this in the inetorgperson.schema:

attributetype (0.9.2342.19200300.100.1.1
NAME ('uid' 'userid')
DESC 'RFC1274: user identifier’
EQUALITY caseIgnoreMatch
SUBSTR caselgnoreSubstringsMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{256})

318 Chapter 19

NOTE

NOTE

attributetype (0.9.2342.19200300.100.1.3
NAME ('mail' 'rfc822Mailbox')
DESC 'RFC1274: RFC822 Mailbox'
EQUALITY caseIgnoreIAsMatch
SUBSTR caselgnoreIA5SubstringsMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26{256})

You can add the mail attribute to an object more than once. You'll see later that this
comes in handy for creating mailing list members.

Let’s say that we want to create an object. In this chapter, we’ll use the
concatenation of the user’s first and last names as the uid attribute.

Defining Aliases

You can find a good attribute for defining aliases in authldap.schema from
Courier IMAP. There’s an auxiliary class there named CourierMailAlias with a
maildrop attribute that defines a RFC 822 mailbox for a mail alias:

attributetype (1.3.6.1.4.1.10018.1.1.4 NAME 'maildrop’
DESC 'RFC822 Mailbox - mail alias'
EQUALITY caselIgnoreIAsMatch
SUBSTR caseIgnoreIA5SubstringsMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26{256})

The CourierMailAlias object class is an auxiliary class, which means that you can’t add
it to a divectory by itself. You need to add it in conjunction with a structural class. This
is fine, because the inetOrgPerson class that we’re alveady using is a structural class.

Creating List Objects

The simplest kind of list that Postfix supports without the help of a list
manager (such as Mailman) are just aliases that map to a list of recipients. At
this point, we already have all of the attributes we need, so we just need to
come up with a suitable list object—anything without a userPassword attribute
should do.

In fact, you don’t need to create an extra object for lists. Just add the
CourierMailAlias object class to the organizationalUnit class used to create the
original branches.

The CourierMailAlias object gives us access to the maildrop and mail
attributes. Now you can assign an alias name, such as all@example.com, to a
maildrop attribute of ou=people,dc=example,dc=com, and add mail entries for
every member in the organization. A complete list object might look like this:

dn: ou=people,dc=example,dc=com
ou: people

description: All employees
objectClass: CourierMailAlias
objectClass: organizationalUnit

A Company Mail Server 319

320

Chapter 19

maildrop: all@example.com
mail: bamm@example.com
mail: pebble@example.com
mail: mcbricker@example.com
mail: flintstone@example.com
mail: rubble@example.com

At this point, the LDAP server has the recipients and aliases that Postfix
needs, so you can turn your attention to the other servers.

Adding Attributes for the Remaining Servers

When Postfix finishes processing an email, it sends it to a local delivery agent
(LDA), such as Courier maildrop. The LDA needs to know the location of
the mailbox and the user and permissions that it should use. Mail transport
agents such as Courier IMAP also need to know where the mailbox is located.

We'll specify the mailbox location with the mailbox attribute from
Courier’s authldap.schema:

attributetype (1.3.6.1.4.1.10018.1.1.1 NAME 'mailbox'
DESC 'The absolute path to the mailbox for a mail account in a non-default
location’

EQUALITY caseExactIASMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 SINGLE-VALUE)

This schema also defines a quota attribute that can define the maximum
size of a mailbox:

attributetype (1.3.6.1.4.1.10018.1.1.2 NAME 'quota’
DESC 'A string that represents the quota on a mailbox'
EQUALITY caseExactIAsMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 SINGLE-VALUE)

However, authldap.schema refers to nis.schema for the following attributes
that Courier needs while accessing mailboxes:

attributetype (1.3.6.1.1.1.1.0 NAME 'uidNumber'
DESC 'An integer uniquely identifying a user in an administrative domain’
EQUALITY integerMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.27 SINGLE-VALUE)
attributetype (1.3.6.1.1.1.1.1 NAME 'gidNumber’
DESC 'An integer uniquely identifying a group in an administrative domain'
EQUALITY integerMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.27 SINGLE-VALUE)
attributetype (1.3.6.1.1.1.1.3 NAME 'homeDirectory'
DESC 'The absolute path to the home directory'
EQUALITY caseExactIAsMatch
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 SINGLE-VALUE)

The uidNumber and gidNumber attributes contain the numbers for the
mailbox user ID and group ID. Courier maildrop needs them to get the
correct permissions for writing messages to a mailbox, and Courier IMAP
needs them when reading and deleting messages. In addition, Courier
maildrop needs the homeDirectory attribute to read filtering rules.

Basic Configuration

NOTE

This section shows you how to integrate LDAP support into Postfix and other
servers. We'll look at only the basic functionality here. The “Advanced
Configuration” section later in the chapter will explain how to secure your data.

Configuring Cyrus SASL

One of the stranger twists of the software installed for the company mail
server is that the Cyrus SASL ldapdb plug-in requires the OpenLDAP
development libraries. However, to be able to talk to Cyrus SASL,
OpenLDAP requires the Cyrus SASL development libraries. If you want
to build both from source code, this cross-reference can be tricky.

The ldapdb plug-in requires OpenLDAP either later than 2.1.27 or later than 2.2.6. If
you already have an appropriate Open LDAP installation that supports SASL, you
may only need to install the Open.LDAP development libraries when you build SASL
with ldapdb support.

To get around this problem, you have to build and install Cyrus SASL
twice. The first time, you'll do it without Idapdb, so that OpenLDAP can link
against the SASL libraries. Later in this chapter, you’ll need to rebuild Cyrus
SASL with your newly installed OpenLDAP library, so that you can get the
ldapdb plug-in. If you don’t need Cyrus SASL for other applications on your
server, you can use the following configuration command to get the
minimum SASL required to build OpenLDAP:

./configure \
--with-plugindir=/usr/lib/sasl2 \
--disable-java \

--disable-krbg \

--with-dblib=berkeley \
--with-saslauthd=/var/state/saslauthd \
--without-pwcheck \
--with-devrandom=/dev/urandom \
--enable-cram \

--enable-digest \

--enable-plain \

--enable-login \

--disable-otp

Now you can turn your attention to building OpenLDAP.

A Company Mail Server N

322

Chapter 19

Configuring OpenLDAP

If you don’t have OpenLDAP on your system, get a version newer than 2.1.27
or 2.2.6 (this version uses a different BerkeleyDB) from a package, or
download the source code from http://www.openldap.org/software/download.
Read the following section “Installing OpenLDAP from Source” if you're
building from source code.

Installing OpenLDAP from Source

As a regular user, unpack the archive and change into the newly created
directory. Run configure with at least the following options:

$./configure --prefix=/usr --exec-prefix=/usr --bindir=/usr/bin \
--sbindir=/usr/sbin --sysconfdir=/etc --datadir=/usr/share \
--includedir=/usx/include --libdir=/usr/lib --libexecdir=/usr/libexec \
--localstatedir=/var --sharedstatedir=/usr/com --mandir=/usr/share/man \
--infodir=/usr/share/info --with-slapd --with-slurpd --without-ldapd \
--with-threads=posix --enable-static --enable-dynamic --enable-local \
--enable-cldap --enable-rlookups --with-tls --with-cyrus-sasl \
--enable-wrappers --enable-passwd --enable-cleartext --enable-crypt \
--enable-spasswd --enable-modules --disable-sql --libexecdir=/usr/sbin \
--localstatedir=/var/run --enable-ldbm --with-ldbm-api=berkeley \
--enable-bdb --enable-ldap --enable-meta --enable-monitor \
--enable-null --enable-rewrite --disable-shared --with-kerberos=kSonly

After the configuration script finishes, run make depend, make, and make
test, and then become root, and run make install. You're now ready to
configure OpenLDAP.

Configuring the LDAP Server

To configure the OpenLDAP server, slapd, change to the configuration
directory (for example, /etc/openldap) and edit the slapd.conf file. You need
to add the following configuration:

SCHEMATA

include /etc/openldap/schema/core.schema

include /etc/openldap/schema/cosine.schema
include /etc/openldap/schema/inetorgperson.schema
include /etc/openldap/schema/misc.schema

include /etc/openldap/schema/nis.schema

include /etc/openldap/schema/authldap.schema

RUNTIME

pidfile /usr/var/slapd.pid
argsfile /usr/var/slapd.args
DATABASE DEFINITIONS
database 1dbm

suffix "dc=example,dc=com"

CAUTION

rootdn "cn=Manager,dc=example,dc=com"

rootpw {CRYPT}SHXa4LHVH8y3A

directory /usr/var/openldap-data

INDICES

index objectClass eq
index ¢cn eq
index mail,maildrop pres

index mailbox,quota,uidNumber,gidNumber eq

The SCHEMATA section of slapd.conf specifies the schemata to load during
startup.

The DATABASE DEFINITIONS section sets “dc=example,dc=com" as the suffix
defining the top branch of your directory tree. It assigns a rootdn set of
attribute values ("cn=Manager,dc=example,dc=com") and a rootpw value to give
the user defined by rootdn read-write access to the directory. Use the
slappasswd(8) command to create an encrypted password.

The INDICES section defines attributes that should be indexed. When you
index an attribute, it is much quicker to look up.

Controlling SASL Authentication in OpenLDAP

Because OpenLDAP has SASL support, it may use SASL during authen-
tication to bind users to the server. Although it will not use plaintext
mechanisms to process authentication, it might offer GSSAPI among the
remaining mechanisms.

Because we’re not going to configure a full-blown Kerberos server just to
use this mechanism, it’s best to disable it now so that clients don’t try to use
it. Do this by listing only the mechanisms you want in a special SASL config-
uration file for OpenLDAP. Create a /usr/lib/sasl2/slapd.conf file with this
setting:

mech_list: DIGEST-MD5

See Chapter 15 for more information about SMTP authentication.

Importing the Directory

Now it’s time to fill the LDAP database with data. There are a lot of ways to
do this, but in our case, slapd probably isn’t running yet. This means that you
can use the slapadd utility on an LDIF file like this:

slapadd -v -c -b "dc=example,dc=com" -1 example.com.ldif

Don’t run slapadd when slapd is running. The utility writes divectly to the database,
and it might cause slapd to crash and corrupt your database.

After successfully importing the LDIF file, start slapd. If you experience
problems with the import, read slapadd(8) to see if you need any other
parameters (or, if things are really bad, turn on debugging).

A Company Mail Server 323

Configuring the LDAP Client

To test your slapd configuration and get it working with Courier IMAP,
you need to configure the OpenLLDAP client. Normally, you need to adjust
some settings in the /etc/openldap/ldap.conf file. For the basics, enable the
following parameters:

URI ldap://mail.example.com
BASE dc=example,dc=com

The URI and BASE parameters specify which LDAP server to access and
where in the tree to start queries. Once you set these parameters correctly,
you can test the directory.

Testing LDAP

The easiest way to test the LDAP server is to run the client tools that come
with OpenLLDAP. From the command line, run ldapsearch to connect the
LDAP client to the server and make a query to the directory. Here’s a
successful example:

ldapsearch -x -LLL -b "uid=bammbamm,ou=it,ou=people,dc=example,dc=com" "(objectclass=*)"
uid=bammbamm, ou=it,ou=people,dc=example,dc=com

dn:

uid:
givenName: Bamm

sn:
cn:

bammbamm

Bamm
Bamm Bamm

homeDirectory: /var/spool/mail/bammbamm

maildrop: postmaster@example.com
maildrop: bamm.bamm@example.com
maildrop: abuse@example.com
objectClass: CourierMailAlias
objectClass: CourierMailAccount
objectClass: inetOrgPerson
mailbox: /var/spool/mail/bammbamm/Maildir
quota: 51200005

userPassword:: YmFtbV9zZWNyZXQ=
uidNumber: 1003

gidNumber: 1003

mail: bamm@example.com

324

Chapter 19

If you get this output, you know that you can access the directory and
that it is stored as intended. If you don’t get any output, configure the
loglevel parameter as described in slapd.conf(5), and see what more
debugging information can tell you.

Configuring Postfix and LDAP

To check whether your Postfix already has LDAP and SASL support enabled,
try this command:

$ 1dd " /usr/sbin/postconf -h daemon_directory”/smtpd
linux-gate.so.1 => (0x00bad000)
libldap.so.2 => /usr/lib/libldap.so.2 (0x00882000)
liblber.so.2 => /usr/lib/liblber.so.2 (0x00646000)
libsasl2.s0.2 => /usr/lib/libsasl2.so.2 (0x0098a000)
libdb-4.2.s0 => /1lib/tls/libdb-4.2.s0 (0x00a73000)
libnsl.so.1 => /lib/libnsl.so.1 (0x00835000)
libresolv.so.2 => /lib/libresolv.so.2 (0x00655000)
libc.so0.6 => /1lib/tls/libc.s0.6 (0x004e6000)
libdl.so.2 => /lib/1libdl.so.2 (0x00603000)
libssl.so.4 => /1lib/1libssl.so.4 (0x0084c000)
libcrypto.so.4 => /1lib/libcrypto.so.4 (0x04377000)
libpthread.so.0 => /1lib/tls/libpthread.so.0 (0x0061c000)
/1ib/1d-1inux.s0.2 => /1lib/1d-linux.so0.2 (0x004cd0o00)
libgssapi_krb5.50.2 => /usr/lib/libgssapi_krb5.s0.2 (0x00d09000)
libkrb5.s0.3 => /usr/lib/libkrbs5.so.3 (0x006da000)
libcom_err.so.2 => /lib/libcom_err.so.2 (0x058fdo0o0)
libkScrypto.so.3 => /usr/lib/libk5Scrypto.so.3 (0x05902000)
libz.so0.1 => /usr/lib/libz.so0.1 (0x00609000)

The lines with the ldap and sasl2 libraries indicate that LDAP and SASL
support have been compiled into Postfix.

You learned how to configure SASL support in Chapter 15. Now you
need support for LDAP in addition to SASL. You can get this support by com-
bining the environment variables CCARGS and AUXLIBS that the build process
uses in a sensible fashion. First, recall that you built for SASL like this:

$ CCARGS="-DUSE_SASL_AUTH -I/usx/local/include AUXLIBS="-L/usr/local/lib
-1sasl2" make makefiles

To build the Cyrus SASL libraries with LDAP support, you need to find
the LDAP libraries and header files on your system. If you don’t know where
they are, search for the libraries like this:

find /usr -name 'libldap*.*'
/usr/local/lib/libldap.so0.2
/usr/local/lib/libldap.s0.2.0.122
/usr/local/lib/1libldap_r.so.2
/usr/local/lib/libldap r.so0.2.0.122
/usr/local/lib/1libldap.so
/usr/local/lib/1libldap.a

A Company Mail Server 325

/usr/local/lib/libldap_r.so
/usr/local/lib/1libldap r.a

find /usr -name 'liblber*.*’
/usr/local/lib/liblber.so.2.0.122
/usr/local/lib/liblber.so.2
fusr/local/lib/liblber.so
fusr/local/lib/liblber.a

This output shows that the LDAP libraries are in /usr/local/lib; the /usx/
1ib and /usr/include paths are searched by the compiler, preprocessor, and
linker automatically. Take a note of this location, and then search for the
corresponding include files with this command:

find /usr -name '*ldap*.h'
/usr/local/include/ldap.h
/usr/local/include/ldap_cdefs.h
/usr/local/include/ldap_schema.h
/usr/local/include/ldap utf8.h
/usr/local/include/ldap_features.h

NOTE [fyou can’t find the include files for LDAP on your system, but the libraries are there,
you probably need to install the LDAP developer packages from your operating system.
You re looking for packages that end in -dev or -devel.

Now that you know where to look for both LDAP and SASL support,
unpack the Postfix source as a regular user, and change to the Postfix
source directory. Configure and build Postfix with options for both SASL
(-DUSE_SASL_AUTH) and LDAP (-DHAS_LDAP) like this:

$ CCARGS="-DHAS_LDAP -DUSE_SASL_AUTH -I/usr/local/include” AUXLIBS="-1ldap
-1lber -L/usr/local/lib -1lsasl2"

$ make makefiles

$ make

After the build completes, become the superuser (root) and run make
install or make upgrade as appropriate. Finally, verify that you have SASL and
LDAP support as described at the beginning of this chapter.

LDAP Lookups

There aren’t many LDAP-related questions on the Postfix mailing lists,
especially compared to the number asking about database backends. Many
people think that running Postfix (or anything else, for that matter) with
LDAP is akin to voodoo and try to avoid it at all costs. However, this just isn’t
the case. The configuration steps for LDAP queries always go as follows.

1. Create a directory for the LDAP configuration files.
2. Create a Postfix configuration file for LDAP.

326 Chapter 19

CAUTION

3. Testan LDAP query.

4. Configure Postfix to use the LDAP query configuration.

You will iterate over these steps twice in the following subsections. First
you will configure a query for local recipients and as a second step you will
configure a query for mail aliases.

Creating an LDAP Configuration Directory

A well-configured LDAP server rejects queries for security-related directory
data. The directory requires users that want to retrieve such data to authen-
ticate (“bind”) to the LDAP server first. You’ll learn how to create a binding
user for Postfix in the “Advanced Configuration” section later in the chapter,
but you need to take the first step of creating the extra configuration
directory now. This is because Postfix bind credentials must be stored in
Postfix-specific configuration files, but you don’t want to put them into your
main.cf file, because that would make them world-readable.

Creating LDAP configurations in external files requires Postfix 2.x. You can configure
LDAP query parameters entively in main.cf, but because this requires that the pass-
words for LDAP users be in main.cf, il'’s not very secure—any user on the Unix system
that Postfix runs on can read them.

If you really want to use themain.cf file to stove the credentials, read the
“Backwards Compatibility” section in the ldap_table(5) manual page.

To create the configuration directory, create an /etc/postfix/ldap
directory accessible only to root and postfix. You'll store all LDAP map
configuration files there and reference them from main.cf.

mkdir /etc/postfix/ldap
chgrp postfix /etc/postfix/ldap
chmod 750 /etc/postfix/ldap

Adding LDAP Queries for Local Recipients

Let’s look now at the basic Postfix parameters for querying an LDAP server.
We will start off by disabling LDAP bind operations. Then we will create a set
of parameters that will give us information to verify to local recipients.

Disabling LDAP Bind

By default, Postfix tries to authenticate via LDAP bind to the server before
running a query. When you’re first starting out, it’s a good idea to disable
this authentication in order to keep things as simple as possible. Create an
LDAP query configuration file named /etc/postfix/ldap/local_recipients.cf
with the following configuration parameter, which turns off the bind:

bind = no

A Company Mail Server 327

328

Chapter 19

Configuring the LDAP Host

You can tell Postfix where to find the directory service with the server_host
and server_port configuration parameters. The server_host parameter defines
the connection type (1ldap://, 1daps://, or ldapi://) as a part of one or more
LDAP server URLs that may include the server port. This parameter defaults
to server_host = ldap://localhost:389.

Optionally, you can set server_port (whose default port is 389) to define
the LDAP server port, but this makes sense only if all of your LDAP servers
listen on the same port. Otherwise, you can just append the port on a per-
URL basis, like this:

server_host = ldap://mail.example.com:389, ldaps://auth.example.com:636

In this chapter, the LDAP server runs on the same host as the other
servers and listens on the default LDAP port (389). In this case, you can set
server_host as follows:

server_host = ldap://mail.example.com

Specifying a Branch

The next thing to do is set Postfix’s starting branch for searches with the
search_base parameter. There is no default value, so you always have to set it.
Add the dn piece of the branch for the user objects, like this:

search_base = ou=people,dc=example,dc=com

Defining LDAP Result Attributes

To complete the LDAP map configuration, you need to define the attribute
that holds the key that Postfix accesses upon lookups. The logic is exactly as
in any other map that you have seen so far. The parameter names for the
keys and values compared to indexed maps are shown in Table 19-1.

Table 19-1: How Fields of Indexed Maps Correspond to LDAP Query

Parameters
Map Type LHS RHS Conditions
indexed map key value -
LDAP query query filter result_attribute, special_result_attribute

result_filter

As you can see, you define the query key attribute with the query_filter
parameter. Following the example from the Example Inc. directory, specify
the attribute for local recipient mail addresses (the mail attribute), and
define the part of the fully qualified mail address that Postfix should submit
to the LDAP server. The substitutions are as follows.

NOTE

NOTE

% The complete mail address (for example, bamm@example.com)
% The localpart without the @ and the domain (for example, bamm)

#%d The domain part without the localpart and the @ (for example,
example.com)

Because the directory entries in this chapter contain only fully qualified
mail addresses, such as bamm@example.com, we’ll use %s. Configure Postfix to
query based on the full domain name as follows:

query filter = (mail=%s)

The standard syntax for LDAP queries and results is defined in RFC 2254 (http://
www. rfc-editor.org/rfc/rfc2254. txt). You can specify your query in any way that

you like. For example, if you have an attribute named mailboxActive in your schema
that denotes an active (not disabled) mailbox, you could form the query parameler as

Sfollows:

query_filter = (&(mail=%s)(mailboxActive=1))

Now you need to define the attribute Postfix will use to query for a result.
There are two parameters at your disposal: result_attribute for configuring
the actual attribute, and result_filter for filtering out parts of the LDAP
query result that you may not need.

In this chapter, you need only verify the existence of a local mail address
because Courier maildrop is the delivery agent in this chapter, not Postfix.
Postfix simply needs to know whether the local recipient address is valid, so
you can use any attribute returned.

This means that Postfix accepts any value that the LDAP server returns as proof that
the local recipient exists for an incoming message. If the LDAP server doesn’t return a
value, Postfix rejects the message.

Choose a simple attribute that’s easy to identify when testing the query.
In our case, uid fits the bill, so here’s how to configure it as the result attri-
bute in the Postfix local_recipients.cf configuration file:

result_attribute = uid

Activating the Query Map

When you're happy with your /etc/postfix/ldap/local_recipients.cf file,

you need to activate this map in the main Postfix configuration. Set the
local_recipient_maps parameter in your main.cf file to a list of maps that
Postfix will consult when looking for local recipients. Use proxymap (described
in Chapter 5) to improve LDAP query performance, as follows:

local recipient maps = proxy:ldap:/etc/postfix/ldap/local recipients.cf

A Company Mail Server 329

330

NOTE

Chapter 19

Each proxymap process asks queries on behalf of multiple clients, and
may, but does not have to, cache lookup results.

With the new map in place, reload your Postfix configuration and start
testing.

Testing LDAP Recipients

At this point, the only test you can perform is checking whether Postfix can
look up a valid local recipient. You won’t be able to send a test message
because local delivery hasn’t been configured.

Use the postmap command to query the LDAP server for a known local
recipient, such as bamm@example.com. However, before you do this you need to
switch to the postfix user on your system, because you must make sure that
this user is allowed to read the LDAP configuration file and run the query. A
successful test looks like this:

su - postfix

$ /usx/sbin/postmap -q "bamm@example.com" ldap:/etc/postfix/ldap/
local_recipients.cf

bammbamm

The query here returns the uid value for bamm@example.com; in this case, the
value for that attribute is bammbamm, so the configuration works, If it doesn’t
work, add a -v parameter to the postmap command for verbose output. In
addition, you can add the debuglevel parameter to the LDAP query config-
uration file:

debuglevel = 1

You can increase the debug level to 3, which should give you all information necessary
to fix a problem.

Querying LDAP for Mail Aliases

To configure Postfix to query the LDAP server for mail aliases, you’ll follow
the same basic configuration steps that were shown in the earlier “Adding
LDAP Queries for Local Recipients” section, except that this time you must
specify a different result_attribute parameter for the query result, and you
must use the query filter parameter to extract a specific attribute from the
results.

Alias names in the example directory server are assigned to the
maildrop attribute of an entry. Therefore, a configuration file for aliases
(for example, /etc/postfix/ldap/virtual_aliases.cf) would look like the
following.

bind = no

server_host = ldap://mail.example.com
search_base = ou=people,dc=example,dc=com
query filter = (maildrop=%s)

result attribute = mail

Configuring Postfix for LDAP Alias Query Maps

With the LDAP alias query configuration file in place, you need to connect it
to your Postfix configuration by setting the virtual_alias_maps parameter in
main.cf. The syntax is the same as in the recipient maps described in the
earlier “Activating the Query Map” section:

virtual alias maps = proxy:ldap:/etc/postfix/ldap/virtual aliases.cf

Reload your configuration and start testing.

Testing LDAP Alias Query Maps

As before, you can’t send a message to test the LDAP query configuration,
but you can use the postmap command. Recall that postmaster@example.comis an
alias for bamm@example.comin the directory. Switch to the postfix user, and see if
the alias map works like this:

su - postfix
$ /usx/sbin/postmap -q "postmaster@example.com" ldap:/etc/postfix/ldap/virtual_aliases.cf
bamm@example.com

If you don’t get any output from this command, add a -v parameter to
the postmap command for verbose output. You can also add the debuglevel
parameter to the LDAP query configuration file (and you can increase the
debug level up to 3, depending on the amount of information you need):

debuglevel = 1

Testing Lists

You may recall that the simple list design described in the “Creating List
Objects” section earlier in the chapter uses aliases. Therefore, you should be
able to retrieve multiple recipients of an alias by running a postmap query on
the list name:

su - postfix
$ /usr/sbin/postmap -q "all@example.com" ldap:/etc/postfix/ldap/virtual_aliases.cf
bamm@example. com, pebble@example.com,mcbricker@example.com, flintstone@example.com,rubble@example.com

A Company Mail Server 331

332

CAUTION

Chapter 19

When the LDAP server returns multiple results, Postfix collects all of them
and transforms them into a comma-separated list, as in the preceding example.

Delegating Transport to Courier Maildrop

The configuration in this chapter does not use any of the Postfix delivery
agents (the local, maildrop, and virtual daemons). One reason for this is that
third-party delivery agents offer features such as filtering rules and quotas. For
example, the user bammbamm could place all messages for postmaster@example.com
in a subfolder. This section shows you how to configure Postfix to delegate the
task of local message delivery to Courier maildrop.

Creating a Local Transport

Start out by defining a new transport service in your master.cf file. Don’t
worry about breaking your current LDA (if you even have a working one),
because Postfix won’t use the new service until you make a corresponding
change in your main.cf file. The new transport will be a pipe transport called
maildrop. Add the following configuration lines to your master. cf file:

maildrop unix - n n - - pipe
flags=DRhu user=vmail argv=/usr/local/bin/maildrop -d ${recipient} -w 75

The flags of this pipe(8) transport operate as follows:

D Prepends a Delivered-To recipient message header with the envelope
recipient address. This mimics the Postfix local daemon and serves
as a precaution against mail loops.

R Prepends a Return-Path message header containing the envelope
sender address. The Postfix local daemon is required to this by RFC
2821.

h Converts the domain name of the command-line $recipient address
and the $nexthop hostname to lowercase.

u Converts the localpart of the command-line $recipient address to
lowercase.

user user=vmail specifies that /usr/local/bin/maildrop -d ${recipient}
should run as the user vmail, a user that you'll see later when setting
up Courier maildrop.

-W Sets the warning level for deliverquota(8) to 75 percent of the mail
directory quota. Omit this if you don’t want to enforce a quota.

After you add the service, edit your main.cf file to tell Postfix to use it as
the local transport:

local_transport = maildrop

There are two side effects of using maildrop instead of the local delivery agent. First local
looks at the alias maps, but Courier maildrop can’t do this. Howevey, you already
addessed this problem in the earlier “Configuring Postfix for LDAP Alias Query Maps”

section when you set the virtual_alias maps parameter. The second limitation is that
maildrop will not take care of Delivered-To loops unless you configure a filler rule. This
will be taken care of in the section “Creating a Mail Filter.”

Limiting Concurrent Messages

Before testing your new transport, you need to make sure it is configured
to deliver to only one user at a time. Don’t fret over any performance loss
from this, because it’s normal for most mail servers. Even the Postfix local
transport is limited to one message at a time with the local_destination_
recipient_limit parameter.

The parameter syntax for creating a limit for other LDAs is servicename_
destination_recipient_limit, with servicename equal to the first field in master.cf.
Add the following line to main.cf for the Courier maildrop service that you
just defined:

maildrop destination recipient limit = 1
Now reload Postfix and start testing.

Testing the LDA

To test the LDA, just send a message to one of the addresses in your recipient
map and watch the mail log. You should be able to see Postfix using the new
maildrop transport like this:

echo foo | /usr/sbin/sendmail -f "" postmaster@example.com

tail -f /var/log/maillog

Jun 29 14:39:13 mail postfix/pickup[5122]: AC7B94400C: uid=0 from=<>

Jun 29 14:39:13 mail postfix/cleanup[5127]: AC7B94400C:
message-id=<20040629123913.AC7B94400C@mail.example.com>

Jun 29 14:39:13 mail postfix/qmgr[5123]: AC7B94400C:
from=<>, size=285, nrcpt=1 (queue active)

Jun 29 14:39:13 mail postfix/pipe[5130]: AC7B94400C:
to=<bamm@example.com>, orig_to=<postmaster@example.com>,
relay=maildrop, delay=0, status=sent (example.com)

Jun 29 14:39:13 mail postfix/qmgr[5123]: AC7B94400C: removed

If you don’t see a maildrop transport in the log, turn on verbose logging
for smtpd in master.cf, reload your configuration, and send another message.

Configuring Courier Maildrop

Courier maildrop is an LDA that takes messages from a transfer agent such as
Postfix and stores them in a recipient’s mailbox in Maildir format. Maildrop
can also apply filters to messages. One more interesting capability is the
enforcement of quotas on directories (messages in Maildir format are stored
as separate files in a directory).

A Company Mail Server 333

334

Chapter 19

Preparing Your System

Courier maildrop prohibits unauthorized users from writing to mailboxes.
You need to choose trusted users and groups before you build the binaries.
Create at least one new user with user ID and group ID numbers matching
the values that you gave to the uidNumber and gidNumber attributes in your
LDAP directory. Courier maildrop and IMAP retrieve these attributes from
the directory when accessing the mailbox.

The example configuration in this chapter uses the following user ID
and group ID:

uidNumber: 1003
gidNumber: 1003

If you haven’t done so yet, create a user and group to match these values,
For example, these commands add a user and group named vmail on a Linux
system:

useradd -u 1003 vmail
groupadd -g 1003 vmail

Installing Courier Maildrop

LDAP support in Courier maildrop is in beta testing as we’re writing this.
It runs well when correctly configured, but it won’t tell you what went wrong
if it catches an error. Considering the speed at which Courier maildrop
evolves, this will probably be fixed by the time you read this book. To get
LDAP support, download the development snapshot of maildrop from
http://www.courier-mta.org/download.phpifmaildrop.

Extract the archive as a regular user, and change to the newly created
directory. Courier maildrop uses GNU Autoconf, so the build options are
specified as follows:

$./configure --enable-restrict-trusted=1 --enable-trusted-users='root vmail'
--enable-trusted-groups="root vmail' --enable-maildirquota --with-trashquota
--enable-maildropldap

Make sure that you specify --enable-maildropldap for LDAP support. If you
want quota support, include --enable-maildirquota and --with-trashquota, but
have a look at the section “Preparing Maildir Quotas” first. After the config-
uration script finishes, run make. If everything goes smoothly, become root
and run make install-strip install-man to install stripped binaries and manual
pages.

Now that you have maildrop installed, you need to do something about
the Postfix pipe daemon, which refuses to run any process as root. To get
around this, change the maildrop binary to setuid root.

chmod 750 /usr/local/bin/maildrop

chmod u+s /usr/local/bin/maildrop

chown root:vmail /usr/local/bin/maildrop

1s -1 /usr/local/bin/maildrop

-Iwsr-x--- 1 root wvmail 165552 Jun 25 12:48 /usr/local/bin/maildrop

Don’t worry about circumventing the normal Postfix security policies.
The pipe daemon runs maildrop, which immediately starts running as root, but
upon getting the correct user ID and group ID from LDAP, maildrop switches
to that user and group.

Configuring Courier Maildrop

The easiest way to set up the maildrop configuration for LDAP is to copy the

sample file named maildropldap.config from the maildrop source directory to

/etc/maildropldap.config (this is where Courier maildrop looks for an LDAP

configuration file by default). Edit the file to match your configuration.
Here’s how it would look for the example in this chapter:

hostname mail.example.com
basedn dc=example,dc=com
filter &(objectclass=inetorgperson)
timeout 5

search_method mail

mail_attr mail

uid attr uid

uidnumber attr uidNumber
gidnumber attr gidNumber
maildir_attr mailbox
homedirectory_attr homeDirectory
quota_attr quota

Creating Maildir Mailboxes

All users in this company mail server are virtual users. They are in no relation
to local user accounts, and when you created users in your LDAP directory,
no script automatically created a home directory or a mailbox.

Before testing the maildrop program, you need to create the user
mailboxes. You'll have to do this by hand for now (you can automate it later
with scripts, of course). Courier maildrop comes with a utility called
maildirmake that creates a Maildir mailbox and a few default subfolders.

Maildrop looks at the homeDirectories attribute on the LDAP server to
locate a mailbox. However, because you switched to virtual users, you can
create a skeleton directory in a place such as /home/mailskel, which you can
simply copy to user home directories without worrying about specific user
permissions.

A Company Mail Server 335

Here’s how to create the outer mail skeleton directory:

mkdir /home/mailskel

chgrp vmail /home/mailskel

chmod 770 /home/mailskel

1s -dall /home/mailskel

drwxrwx--- 6 root vmail 4096 Jun 28 17:52 /home/mailskel

Now you can create another directory named /home/mailskel/.templateDir
and give ownership to vmail:

mkdir /home/mailskel/.templateDir

chown vmail /home/mailskel/.templateDir/

chgrp vmail /home/mailskel/.templateDir/

chmod 700 /home/mailskel/.templateDir/

1s -dall /home/mailskel/.templateDir

drwx------ 2 vmail vmail 4096 Jun 29 22:27 /home/mailskel/.templateDir

You’re now ready to build the actual mail directory. However, before
running maildirmake to create the basic Maildir directory structure, you need
to switch to the vmail user so that maildrop will be able to access an exact
copy of it later:

su - vmail
$ maildirmake /home/mailskel/.templateDir/Maildir

Verify that maildirmake created the directory as follows:

$ 1s -la /home/mailskel/.templateDir/Maildir

total 20

drwx------ 5 vmail vmail 4096 Jun 29 22:31 .
drwx------ 3 vmail vmail 4096 Jun 29 22:31 ..
drwx------ 2 vmail vmail 4096 Jun 29 22:31 cur
drwx------ 2 vmail vmail 4096 Jun 29 22:31 new
drwx------ 2 vmail vmail 4096 Jun 29 22:31 tmp

As you can see, you now have a directory called Maildir containing the
three subdirectories cur, new, and tmp, where inbox messages reside
(depending on their status).

Run maildirmake a few more times to create subfolders named Drafts,
Trash, and Spam:

$ maildirmake -f Drafts /home/mailskel/.templateDir/Maildir
$ maildirmake -f Trash /home/mailskel/.templateDir/Maildir
$ maildirmake -f Spam /home/mailskel/.templateDir/Maildir
$ 1s -la /home/mailskel/.templateDir/Maildir

336 Chapter 19

total 32

drwx------ 8 vmail vmail 4096 Jun 29 22:39 .
drwx------ 3 vmail vmail 4096 Jun 29 22:31 ..
drwx------ 2 vmail vmail 4096 Jun 29 22:31 cur
drwx------ 5 vmail vmail 4096 Jun 29 22:39 .Drafts
drwx------ 2 vmail vmail 4096 Jun 29 22:31 new
drwx------ 5 vmail vmail 4096 Jun 29 22:39 .Spam
drwx------ 2 vmail vmail 4096 Jun 29 22:31 tmp
drwx------ 5 vmail vmail 4096 Jun 29 22:39 .Trash

Notice that each of these subdirectories has cur, new, and tmp
subdirectories.

Your mail directory template is now available as a skeleton to use when
creating virtual Maildir mailboxes for other users. Use cp -pR as the superuser
to preserve ownership and permissions when copying the template. For
example, you can create the mailbox for bammbamm as follows:

cp -pR /home/mailskel/.templateDir/ /var/spool/mail/bammbamm
1s -all /var/spool/mail/bammbamm

total 12

drwx------ 3 vmail vmail 4096 Jun 29 22:31 .
drwxrwx--- 9 root vmail 4096 Jun 29 22:55 ..
drwx------ 8 vmail vmail 4096 Jun 29 22:39 Maildir
1s -all /var/spool/mail/bammbamm/Maildir/

total 32

drwx------ 8 vmail vmail 4096 Jun 29 22:39 .
drwx------ 3 vmail vmail 4096 Jun 29 22:31 ..
drwx------ 2 vmail vmail 4096 Jun 29 22:31 cur
drwx------ 5 vmail vmail 4096 Jun 29 22:39 .Drafts
drwx------ 2 vmail vmail 4096 Jun 29 22:31 new
drwx------ 5 vmail vmail 4096 Jun 29 22:39 .Spam
drwx------ 2 vmail vmail 4096 Jun 29 22:31 tmp
drwx------ 5 vmail vmail 4096 Jun 29 22:39 .Trash

Don’t create directories for the rest of your users yet; have a look at the
next section first.

Creating a Mail Filter

After creating a Maildir template directory, you can create a default set of
delivery filters for Courier maildrop. To get started, configure a global set of
rules in /etc/maildroprc that apply to every mail recipient on your server. For
debugging purposes, you may find it handy to put a log file into each user’s
home directory with this rule:

logfile "$HOME/maildrop.log"

A Company Mail Server 337

338

NOTE

Chapter 19

Now you can turn your attention to filter rules. The first rule in the
following example will prevent a Delivered-To loop as mentioned in the
section “Creating a Local Transport.” It should always be at the beginning of
your maildroprc file to catch before any other actions are carried out. The
second rule tells maildrop to put any message with X-Spam-Status: Yes in the
message header into the .spam subfolder of the recipients mailbox ($DEFAULT):

logfile "$HOME/maildrop.log"
if (/"Delivered-To: $LOGNAME@mail.example.com/:h)
{

echo "This message is looping, it already has my Delivered-To: Headex!"
EXITCODE = 1
exit
}
if (/~X-Spam-Status: Yes/)
{
to $DEFAULT/.spam/

}

You can filter on a per-user basis by adding a .mailfilter file with
additional rules to a recipient’s home directory. You must use a strict set of
permissions, or maildrop will refuse to use instructions from .mailfilter.
Here’s how to create it for bammbamm:

su - wmail

$ cd /var/spool/mail/bammbamm
$ touch .mailfilter

$ chmod 600 .mailfilter

Recall that the preceding user is also the postmaster. Therefore, the
following .mailfilter filter rule files messages with postmaster@example.com as
the recipient in the message header to the .postmaster directory:

if (/*To.*postmaster@example\.com/)

{
to "$DEFAULT/.postmaster/"

}

Global filter rules take precedence over per-user rules.

Of course, you haven’t created the .postmaster folder yet, so before you can
use this rule, you must create it. Become vmail and run maildirmake as follows:

su - vmail
$ cd /var/spool/mail/bammbamm
$ maildirmake -f postmaster Maildir

Maildrop filtering rules can make life a lot easier for users because
they don’t have to rely on their mail client. To learn more about
maildrop’s filtering capabilities, refer to the maildropfilter(5) manual

page, and pay special attention to the examples listed for http://
www.dotfiles.com in the “Other” section.

Preparing Maildir Quotas

Quotas seem like a nice feature to have, but before you decide to turn them
on, you should be aware that the maildrop quota system is somewhat contro-
versial because Maildir quotas are not reliable all the time. The following
statement by Victor Duchovni summarizes a Postfix developer’s point of view:

The real sticking point is that the users of “maildir++” don’t

want robust quota code that is guaranteed to work all the

time! They are willing to trade robustness (quota state files

never need to be rebuilt, user always under quota, . . .) for

ease of use (no filesystem quota interface to worry about,

quotas can be soft allowing for configurable limited

functionality when over quota).

Of course, this aspect of the quotas is known (see http://www.inter7.com/
courierimap/README.maildirquota.html), but many administrators still prefer to
take the advantages of Courier maildrop along with some slight disadvan-
tages. Every situation is different, so you need to decide on the matter of
quotas for yourself.

If you want to go for it, first add -w 75 to the maildrop service line in the
earlier “Creating a Local Transport” section to generate a warning message
when the mail directory is at 75 percent capacity (a “soft” limit). You will
need to come up with the warning message template yourself. Create the
template as a plaintext file named /usr/local/etc/quotawarnmsg containing a
message something like this:

From: MAILER-DAEMON <>

To: Valued Customer:;

Subject: Mail quota warning

Mime-Version: 1.0

Content-Type: text/plain; charset=iso-8859-1
Content-Transfer-Encoding: 7bit

Your mailbox on the server is now more than 75% full. So that you can continue
to receive mail you need to remove some messages from your mailbox.

Maildrop adds Message-ID and Date headers when storing the quota
warning in the recipient’s mailbox.
Testing Courier Maildrop
It’s now time to test your Courier maildrop installation. There are four steps
in the testing:
1. Test that Courier maildrop works without Postfix.

2. Use the sendmail program that comes with Postfix to deliver a message
to Courier maildrop.

A Company Mail Server 339

340

Chapter 19

3. Test that the filters work.

4. Test that the quotas work (if you chose to use them).

Testing Stand-Alone Courier Maildrop

Switch to the vmail user and execute the maildrop command as Postfix would:

su - vmail
$ /usxr/local/bin/maildrop -d bamm@example.com
this is a test message

Enter CTRL-D on a line by itself to send the message. Check whether
maildrop terminated cleanly by looking at the exit code, as follows:

$ echo $?
0

An exit code of zero indicates successful execution and delivery. Of
course, you could also verify that maildrop created a new file in bamm’s mail
directory:

$ 1s -1 /var/spool/mail/bammbamm/Maildir/new
total 4

“TW------- 1 vmail vmail 23 Jun 30 12:12
1088590342.M975018P6589V000000000000030210001840E_0.mail.example.com,S=4

If you enabled Courier maildrop logging, you will find this proof of
delivery in the log:

Date: Mon Aug 9 09:05:56 2004

From:

Subj:

File: /var/spool/mail/bammbamm/Maildir (12)

Testing Courier Maildrop with Postfix

To test Postfix with maildrop, use the Postfix sendmail binary and inspect your
mail log as follows:

echo foo | /usxr/sbin/sendmail -f rubble@example.com bamm@example.com

tail -f /var/log/maillog

Jul 26 23:20:58 mail postfix/pickup[27883]: 608DD229EF5: uid=0
from=<rubble@example.com>

Jul 26 23:20:58 mail postfix/cleanup[28429]: 608DD229EF5:
message-1id=<20040726212058.608DD229EF5@mail . example.com>

Jul 26 23:20:58 mail postfix/qmgr[27882]: 608DD229EF5:
from=<rubble@example.com»>, size=288, nrcpt=1 (queue active)

Jul 26 23:20:58 mail postfix/pipe[28432]: 608DD229EF5: to=<bamm@example.com>,
relay=maildrop, delay=0, status=sent (example.com)
Jul 26 23:20:58 mail postfix/qmgr[27882]: 608DD229EF5: removed

The mail log here indicates that Postfix relayed the message to maildrop.
If you enabled logging in /etc/maildroprc, you should find a log entry like the
following in Bamm Bamm’s maildrop.log file:

Date: Mon Jul 26 23:24:42 2004

From: rubble@example.com (root)

Subj:

File: /var/spool/mail/bammbamm/Maildir (345)

This entry states that a message from rubble@example.com (identified by
Postfix as root) was delivered to /var/spool/mail/bammbamm/Maildir, which
happens to be Bamm Bamm’s inbox.

Testing Courier Maildrop Filters

To test filtering, create and send a file named testmessage with something to
trigger the filter rules in /etc/maildroprc. Here’s a message that should work
with the spam filtering rule from the section “Creating a Mail Filter”:

From: Barney <rubble@example.com>
To: Bamm Bamm <bamm@example.com>
Subject: Test message tagged as SPAM
X-Spam-Status: Yes

foo bar

Send the message with sendmail as follows:
/usr/sbin/sendmail -f rubble@example.com bamm@example.com < testmessage

In addition to checking the spam subfolder to verify that it works, check
the maildrop.log file. It should look like this:

Date: Mon Jul 26 22:29:24 2004

From: Barney <rubble@example.com>

Subj: Test message tagged as SPAM

File: /var/spool/mail/bammbamm/Maildir/.spam/ (412)

The message was delivered to the subfolder .spam, so the global
filters work.
Now alter your test message as follows to see if local filters work:

From: Barney <rubble@example.com>

To: Postmaster <postmaster@example.com>
Subject: Test message for Postmaster

A Company Mail Server M

Send this message to postmaster@example.com:
/usx/sbin/sendmail -f rubble@example.com postmaster@example.com < testmessage

The maildrop.log file should look like the following, confirming that the
message went to the Postmaster’s folder:

Date: Mon Jul 26 23:36:48 2004

From: Barney <rubble@example.com>

Subj: Test message for Postmaster

File: /var/spool/mail/bammbamm/Maildir/.postmaster (391)

Testing Courier Maildrop Quotas

Finally, if you configured maildrop to use Maildir quotas, you need to test
whether the soft limitand hard limit work. Create a testmessage that has a size
of 5MB like this:

dd if=/dev/zero of=/root/testmessage bs=5M count=1
1+0 records in

1+0 records out

1s -all testmessage

-Iw-I--r-- 1 root root 5242880 Jul 27 09:25 testmessage

Next, use ldapmodify to set a lower quota for Bamm Bamm. It should
reach softlimit after one testmessage and hardlimit after the second. Create a
file, such as modify _bammbamm_quota.ldif, including your changes:

dn: uid=bammbamm,ou=it,ou=people,dc=example,dc=com
changetype: modify

replace: quota

quota: 69905075

Then run 1ldapmodify, and import the changes from modify_bammbamm_
quota.ldif:

ldapmodify -x -D "cn=Manager,dc=example,dc=com" -w secret -f modify_bammbamm_quota.ldif

When all of this is set up, you can send the first of the two test messages
off to bamm@example.com:

/usr/sbin/sendmail -f rubble@example.com bamm@example.com < /root/testmessage

342

Check whether the message was delivered to Bamm Bamm’s mailbox:

1ls -la

~IW------- 1 vmail vmail 5243221 Jul 27 09:38 1090913892.\
M24019P29629V0000000000000302100229EF6_0.mail.example.com,5=5243221

-IW-T----- 1 vmail vmail 447 Jul 27 09:38 1090913893.\

M932062P29629V0000000000000302100229F00_warn.mail.example.com,S=447

Chapter 19

You can see an additional message that carries the string warn in its

filename. Use cat to have a look at it:

cat 1090913893.M932062P29629V0000000000000302100229F00_warn.mail.example.com\,S\=447

From: MAILER-DAEMON <>

To: Valued Customer:;

Subject: Mail quota warning

Mime-Version: 1.0

Content-Type: text/plain; charset=iso-8859-1
Content-Transfer-Encoding: 7bit

Your mailbox on the server is now more than 75% full. So that you can
continue to receive mail you need to remove some messages from your mailbox.

Maildrop has delivered the message, and it created a mail quota warning
message in the recipient’s mailbox. Because the mailbox is said to be 75
percent full, your next message will saturate the hardlimit; maildrop will have
to bounce the message back to rubble@example. com:

/usx/sbin/sendmail -f rubble@example.com bamm@example.com < /root/testmessage

In the mail log, you should see that the message was bounced back to the
sender:

tail -f /var/log/maillog

Jul 27 09:59:18 mail postfix/pickup[29788]: 4C083229F09: uid=0
from=<rubble@example.com>

Jul 27 09:59:18 mail postfix/cleanup[29793]: 4C083229F09:
message-id=<20040727075918.4C083229F09@mail.example.com>

Jul 27 09:59:18 mail postfix/qmgr[29789]: 4C083229F09:
from=<rubble@example.com>, size=5250843, nrcpt=1 (queue active)

Jul 27 09:59:19 mail postfix/pipe[29795]: 4C083229F09: to=<bamm@example.com>,
relay=maildrop, delay=1, status=bounced (permission denied. Command output:
maildrop: maildir over quota.)

The bounce notifies the sender, rubble@example.com, that delivery was not
possible due to the following reason: <bamm@example.com>: permission denied.
Command output: maildrop: maildir over quota.

Configuring Courier IMAP

The last server that you need to configure is Courier IMAP. If you're not
familiar with it already, Courier supports the Maildir format and offers POP,
POP-SSL, IMAP, and IMAP-SSL services to clients.

Installing Courier IMAP

To install the Courier IMAP server, download the source code from http://
www. courier-mta.org/download.php#imap. As a normal user, extract the archive,
change to the new directory, and run configure as follows.

A Company Mail Server 343

344

NOTE

Chapter 19

$./configure --enable-workarounds-for-imap-client-bugs --enable-unicode
--without-authpgsql --without-socks
$ make

The configuration process automatically detects LDAP libraries on your
machine.

If you're running Red Hat, add --with-redhat to the configuration options to enable a
Red Hat—specific workaround.

After the configuration is complete, switch to root and run make install
install-configure to install the software and the documentation.

Configuring Courier IMAP to Use Its LDAP Authentication Daemon

Courier uses a modular authentication backend (the modules are located
in /usr/lib/courier-imap/libexec/authlib if you compiled Courier IMAP with
the default options). To configure the Courier authentication daemon
(authdaemon) for exclusive LDAP authentication, change the value of the
authmodulelist parameter in /usr/lib/courier-imap/etc/authdaemonrc to read
as follows:

authmodulelist="authldap"

For consistency, you should remove all other module names from the
authmodulelist.

While still editing the authdaemonrc file, go to the end of the file and
change or add the version parameter to include only authdaemond. 1dap
(otherwise, authdaemon chooses the first authdaemond.* module that it finds):

version="authdaemond.ldap"

Configuring the Authentication Backend

You now need to tell the authentication backend about your LDAP server
and directory. To configure the authdaemond.1ldap module, change the default
entries in /usr/lib/courier-imap/etc/authldaprc to match your server and
directory. To make it work with the example in this chapter, specify the
following parameters:

LDAP_SERVER mail.example.com
LDAP_BASEDN dc=example,dc=com

LDAP_MAIL mail

LDAP_FILTER (objectClass=inetorgperson)
LDAP_HOMEDIR homeDirectory

LDAP_MAILDIR mailbox

LDAP_MATLDIRQUOTA quota

NOTE

LDAP_CLEARPW userPassword
LDAP_UID uidNumber
LDAP_GID gidNumber

The comments in authldaprc ave quite helpful for explaining the parameters.

Creating the IMAP Certificate

The only thing left to do is to create a security certificate for Courier IMAP.
Although Courier creates one automatically upon starting up imapd-ssl (and
it comes with the mkimapdcert utility), we can’t really use it because itisn’t
signed by our certification authority.

Follow these steps to create the certificate:

1. Assuming that you set up your own CA as described in Chapter 17, you
can create an imapd certificate as follows:

openssl req -new -nodes -keyout imapd_private_key.pem -out
imapd_private_key.pem -days 365

2. Sign the key with your CA, creating the public certificate:

openssl ca -policy policy anything -out imapd_public_cert.pem -infiles
imapd_private_key.pem

3. Creating the certificate file for Courier IMAP is a little different than for
Postfix TLS and OpenLLDAP. Concatenate both key files to create an
imapd.pem file:

cat imapd_private key.pem imapd_public_cert.pem > imapd.pem

4. Copy the certificate to where Courier can find it, and set the correct per-
missions to protect the private key inside the file:

cp imapd.pem /usr/lib/courier-imap/share/imapd.pem
chmod 600 /usr/lib/courier-imap/share/imapd.pem
chown root /usr/lib/courier-imap/share/imapd.pem

5. Start the SSL instance of imapd:

/usr/lib/courier-imap/libexec/imapd-ssl.rc start

6. Use ps to make sure that it started:

ps auxwww | grep imapd-ssl
root 1676 0.0 0.3 1940 500 ? S 16:08 0:00 /usr/lib/ \

A Company Mail Server 345

346

NOTE

Chapter 19

courier-imap/libexec/couriertcpd -address=0 \
-stderrlogger=/usr/lib/courier-imap/sbin/courierlogger \
-stderrloggername=imapd-ssl -maxprocs=40 -maxperip=4 \
-pid=/var/run/imapd-ssl.pid -nodnslookup -noidentlookup 993 \
fusr/lib/courier-imap/bin/couriertls \

root 1680 0.0 0.2 1952 340 ? S 16:08 0:00 /usr/lib/ \
courier-imap/sbin/courierlogger imapd-ssl

root 1810 0.0 0.4 4600 564 pts/0 S 17:24 0:00 grep imapd-ssl

You can use the seripts in /usr/1ib/courier-imap/libexec and copy them to your
init.d directory to have Courier started and stopped automatically when you change
runlevels.

Testing the IMAP Server

To verify that your IMAP server is accessible and that users can log in,
connect to port 143 of your server and carry out a session. Connect to the
server as follows:

telnet mail.example.com 143

* 0K [CAPABILITY IMAP4revi UIDPLUS CHILDREN NAMESPACE \
THREAD=ORDEREDSUBJECT THREAD=REFERENCES SORT QUOTA \
IDLE ACL ACL2=UNION STARTTLS] Courier-IMAP ready. \
Copyright 1998-2004 Double Precision, Inc. \
See COPYING for distribution information.

After you see the preceding greeting message, log in:

. login bammbamm bamm_password
. OK LOGIN Ok.

Now select the inbox to see whether the folder is working properly:

select INBOX

FLAGS (\Draft \Answered \Flagged \Deleted \Seen \Recent)

OK [PERMANENTFLAGS (* \Draft \Answered \Flagged \Deleted \Seen)] Limited
5 EXISTS

0 RECENT

OK [UIDVALIDITY 1089237749] Ok

OK [MYRIGHTS "acdilrsw"] ACL

. OK [READ-WRITE] Ok

* ¥ X ¥ X X .

Finally, log out:

logout
* BYE Courier-IMAP server shutting down
. 0K LOGOUT completed

Testing IMAP over TLS

To test IMAP over TLS, use the s_client utility from OpenSSL instead of

telnet. Letit connect to port 993 (the imaps port). This client displays quite a

bit of certificate-checking output, but after the connection is established, you
can use it just as you did with the preceding unencrypted session. Here’s how

it should look:

openssl s_client -CAfile /usr/share/ssl/certs/cacert.pem -connect localhost:993

CONNECTED(00000003)

depth=1 /C=EX/ST=Examplia/L=Exampleton/0=Example Inc./OU=Certification

Authority/\
CN=mail.example.com/emailAddress=certmaster@example.com

verify return:1

depth=0 /C=EX/ST=Examplia/L=Exampleton/O=Example Inc./OU=IMAP \

services/CN=mail.example.com/emailAddress=postmaster@example.com

verify return:1

Certificate chain

0 s:/C=EX/ST=Examplia/L=Exampleton/O=Example Inc./OU=IMAP services/\

CN=mail.example.com/emailAddress=postmaster@example.com

i:/C=EX/ST=Examplia/L=Exampleton/O=Example Inc./OU=Certification
Authority/ CN=mail.example.com/emailAddress=certmaster@example.com

Server certificate

MITEDDCCA3WgAwIBAg IBAzANBgkqhkiGIwOBAQQFADCBSDELMAKGAIUEBhMCRVgX
ETAPBGNVBAETCEV4YW1wbG1hMRMWEQYDVQQHEWpFeGFtcGx1dGIuMRUWEWYDVQOK
EwxFeGFtcGx1IE1uYy4xIDAeBgNVBASTFON1cnRpZmljYXRpb24g0QXVoaGoyaXR5
MRkwFwYDVQQDExBtYWLsLmV4YWiwbGUuY29tMSUwIWYIKoZIhvcNAQkBFhZjZXJ0
bWFzdGVyQGV4YW1wbGUuY29tMBAXDTAOMDcxMzEZNTUZMLoXDTAIMDCXMzEZNTUZ
MlowgaYxCzAJBgNVBAYTAKVYMREWDWYDVQQIEwhFeGFtcGxpYTETMBEGALIUEBXMK
RXhhbXBsZXRvbjEVMBMGALUEChMMRXhhbXBsZSBIbmMuMRYwFAYDVQOLEw1ITUFQ
IHN1cnZpY2VzMRkwFwYDVQODEXBtYW1sLmV4YW1wbGUuY29tMSUwIwYIKoZIhveN
AQkBFhZwb3NObWF zdGVyQGY4YWiwbGUuY29tMIGTMAOGCSqGSIb3DQEBAQUAAAGN
ADCBiQKBgQC95UUtw3dVVGghNLPEN3YBw/ iKMkXtNhX11LAUEShZEIDGGjB1q9W8
QC4mLBOSWTYLTXWUbvoIHmBCmf6tzVv0i932r4KTDzanLP7EDc4tvg8ouhFxUEka
1VA+1g3150Y8v1LIOYWxS8fpmROENYHWncoShmXRPjg4w06/2pZaawIDAQABo4IB
PDCCATgwCQYDVROTBAIWADAsBglghkgBhvhCAQOEHXYdT3B1bINTTCBHZWS 1lemFo
ZWQg02VydG1maWNhdGUWHQYDVROOBBYEFFK61+FMcqcC3M/Em3X2181Cn8JuMIHd
BgNVHSMEgdUwgdKAFMNGZ7 /NoxrS6WpJQIZ2IhDno97iXoYG2pIGzMIGWMOswCQYD
VQQGEwIFWDERMASGA1UECBMIRXhhbXBsaWEXEzARBgNVBACTCkV4YW1wbGYOb24x
FTATBgNVBAOTDEV4YW1wbGUgSW5jLjEgMBAGALUECXMXQ2VydGlmaWNhdG1vbiBB
dXRob3JpdHkxGTAXBgNVBAMTEG1haWwuZXhhbXBsZS5jb20xITAjBgkqhkiGowoB
COEWFmN1cnRtYXNOZXIAZXhhbXBsZ55]b22CAQAWDQYIKoZIhvcNAQEEBQADEYEA
iqd/nOvihp1EWF+K7hgbpt19vi3tzyuE3TMSI30XtGnQtYNLTvx3eaYDBecUQal1
q10cQBsvz17+n0z9jwD69U1BWUANWXDUObPHmNT 7CeePVnv6fAyZ4Ig9x8vAPzDD
Nu/Tu88MokEVQ2XT350PM+gDy3Mwa4NTYB2xhky8Ptg=

————— END CERTIFICATE-----

A Company Mail Server

347

348

subject=/C=EX/ST=Examplia/L=Exampleton/0O=Example Inc./QU=IMAP services/\
CN=mail.example.com/emailAddress=postmaster@example.com
issuer=/C=EX/ST=Examplia/L=Exampleton/O=Example Inc./OU=Certification
Authority/\
CN=mail.example.com/emailAddress=certmaster@example.com

No client certificate CA names sent

SSL handshake has read 1202 bytes and written 340 bytes

New, TLSv1/SSLv3, Cipher is AES256-SHA

Server public key is 1024 bit

SSL-Session:

Protocol : TLSvi

Cipher : AES256-SHA

Session-1ID:
7AAGE031976D8B3846F1B2C8FCBEBEB777C89BAD16E548COD8FE0B170BF1D49B

Session-ID-ctx:

Master-Key: E41CE39B98EFF3395936404F7142D2804FA7BBE63ADB6AS7F3FB51\

3A756E6D55F548A5765AC27F99F862F46664131C72

Key-Arg : None

Krbs Principal: None

Start Time: 1089732738

Timeout : 300 (sec)

Verify return code: 0 (ok)

* OK [CAPABILITY IMAP4revl UIDPLUS CHILDREN NAMESPACE THREAD=ORDEREDSUBJECT \
THREAD=REFERENCES SORT QUOTA IDLE AUTH=PLAIN ACL ACL2=UNION] Courier-IMAP
ready. \

Copyright 1998-2004 Double Precision, Inc. See COPYING for distribution
information.

. login bamm@example.com bamm_secret

. OK LOGIN Ok.

. logout

* BYE Courier-IMAP server shutting down

. 0K LOGOUT completed

closed

Congratulations! You now have a working LDAP-based mail server. But
there still are a few things to do.

Advanced Configuration

Chapter 19

Your mail server is functional, but you still have more work to do. At the
moment, anyone who can connect to the LDAP server can retrieve security-
related data, such as the userPassword attribute. Furthermore, all data
retrieved by the various servers (including Postfix) conduct their LDAP
sessions in plaintext.

Your first priority should be to address these security issues by tightening
things up. This section shows you how to use bind users in an LDAP server so
that you can limit what the LDAP server can send to a client. In addition,
you’ll see how to encrypt the LDAP session itself. As an added bonus, you'll
configure ldapdb-based SMTP authentication and use it to enforce a com-
pany policy that prevents potential abuse of sender addresses.

Expanding the Directory

Controlling access to an LDAP directory and enforcing SMTP authentication
require you to set up accounts for all servers that depend on the directory.
To do this, you need to expand the directory tree to add another top branch
that will keep servers separate from mail users. Figure 19-3 illustrates the new
branch called ou=auth,dc=example,dc=com, which holds objects of the class
account.

dc=example,dc=com

ou=auth ou=people

dn: uid=postfix,ou=auth,dc=example,dc=com

uid: postfix

userPassword: {SHA}7js/stCLRNg3ayZuWxyjv1B4Cfos=
objectClass: account

objectClass: simpleSecurityObject

description: Postfix Bind user

Figure 19-3: Authentication branch of Example Inc.

In the plaintext directory, you will use these attributes and schemata:

dn: ou=auth,dc=example,dc=com

ou: auth

objectClass: organizationalUnit

dn: uid=postfix,ou=auth,dc=example,dc=com
uid: postfix

objectClass: account

A Company Mail Server 349

350

Chapter 19

objectClass: simpleSecurityObject
description: Postfix Bind user

userPassword: {CRYPT}91GRsINHNSDrI

dn: uid=couriermaildrop,ou=auth,dc=example,dc=com
uid: couriermaildrop

objectClass: account

objectClass: simpleSecurityObject
description: Courier Maildrop Bind user
userPassword: {CRYPT}1A8iQdmwZRC86

dn: uid=courierimap,ou=auth,dc=example,dc=com
uid: courierimap

objectClass: account

objectClass: simpleSecurityObject
description: Courier IMAP Bind user
userPassword: {CRYPT}S1t1/3ENmjkis

dn: uid=ldapdb,ou=auth,dc=example,dc=com

uid: ldapdb

objectClass: inetOrgPerson

givenName: ldapdb

sn: ldapdb

cn: ldapdb

userPassword: AvaAgo7i

mail: ldapdb

saslAuthzTo: ldap:///
ou=people,dc=example,dc=com??sub?(objectclass=inetOrgPerson)

Each server that accesses the LDAP directory (Postfix, Courier maildrop,
Courier IMAP, and Cyrus SASL) through the ldapdb module will have its
own account. The attributes in the uid=1dapdb, ou=auth, dc=example,dc=com object
differ from the others as follows:

¢ The password is stored in plaintext format to enable the DIGEST-MD5
shared-secret authentication mechanism (this mechanism can’t access
encrypted passwords).

e The new mail attribute will be used instead of uid to authenticate users.

e The saslAuthzTo attribute defines where 1dapdb can take another user’s
identity.

Adding Authentication to Servers

The first feature that we'll implement is mail relaying through SMTP
authentication so that mobile and remote users with IP addresses outside the
local trusted network can send mail. You already saw how to do this without
LDAP in Understanding SMTP authentication, but this time we’ll build and
configure Cyrus SASL with the ldapdb plug-in. You could always do it with
the saslauthd stand-alone daemon, but unfortunately, this daemon is limited

to plaintext mechanisms. When you’'re through with this section, your Postfix
server should be able to offer plaintext mechanisms (PLAIN, LOGIN) and
shared-secret mechanisms (CRAM-MDS, DIGEST-MD5) to mail clients.

The authentication process differs slightly from what is described in
Chapter 16, which discusses Postfix and Cyrus SASL interaction, because it
uses an authorization ID to verify authentication. This identifier stems from
the Cyrus IMAP project, where it is possible to allow a group of users to act
on behalf of one user. For example, you can set Cyrus IMAP up to allow
others to read a vacationing user’s mail without exchanging any passwords.

The ldapdb authentication process works as follows:

1. A mail client using SMTP authentication connects to the Postfix server
and transmits the username (and a passphrase if a plaintext mechanism is
in use). This username is the authentication ID in the context of SASL.

2. The Postfix smtpd asks the SASL library to verify the credentials. The
SASL library delegates this task to the Idapdb plug-in, which will get in
contact with the LDAP server.

3. The ldapdb configuration for the Postfix smtpd daemon contains another
username and passphrase (ldapdb transmits the passphrase only when the
client uses a plaintext mechanism). This username is called the authoriza-
tion ID in the context of SASL because it has permission to retrieve the
passphrase from the mail user (the authentication ID).

4. Ifldapdb succeeds in retrieving the passphrase from the LDAP server, it
compares the string to the passphrase given by the mail client. The exact
method of verification depends on the mechanism that the mail client
used. Plaintext mechanisms mean that a simple comparison of strings
will be performed, but shared-secret mechanisms cause ldapdb to calcu-
late strings using the passphrase and to compare the strings.

If either method succeeds, authentication was successful, and
ldapdb transmits the information back to SASL, which then tells Postfix
that it may grant relay access.

Applying the Idapdb Patch

The Idapdb plug-in was contributed to Cyrus SASL by OpenLDAP architect
Howard Chu to enable shared-secret mechanisms to SASL authentication.
Though Idapdb has been scheduled to be part of future Cyrus SASL versions,
it hasn’t made its way into the current release (as of Cyrus SASL 2.1.19). To
make it easier to get Idapdb support for Cyrus SASL, we’ve created a patch
that you can download from the http://www.postfix-book.com website.

To apply the patch to the Cyrus SASL source files, unpack a fresh SASL
distribution and change into the new directory. Apply the patch as shown in
the following example.

A Company Mail Server 351

352

Chapter 19

patch -p1 < ../cyrus-sasl-2.1.19-1dapdb.patch
patching file config/openldap.m4
patching file configure.in
patching file doc/install.html
patching file doc/options.html
patching file doc/readme.html
patching file doc/sysadmin.html
patching file lib/staticopen.h
patching file plugins/ldapdb.c
patching file plugins/Makefile.am
patching file plugins/makeinit.sh

If the patch goes cleanly, build Cyrus SASL like this (notice the --with-
ldap* options):

./configure \
--with-plugindir=/usr/lib/sasl2 \
--disable-java \

--disable-krbg \
--with-dblib=berkeley \
--with-saslauthd=/var/state/saslauthd \
--without-pwcheck \
--with-devrandom=/dev/urandom \
--enable-cram \

--enable-digest \
--enable-plain \

--enable-login \

--disable-otp \
--with-ldap=/usr \
--with-1dapdb

After the configuration process completes, you can install or upgrade
your current version of SASL by running make install. If you have not already
done so, create a symbolic link from /usr/local/lib/sasl2 to /usr/lib/sasl2,
because SASL will expect to find the libraries in that directory with these
particular configuration options.

When you are finished, you should see these new ldapdb libraries in
/usr/lib/sasl2:

1s -la libldapdb.*

-Twxr-xr-x 1 root root 702 Jul 16 20:43 libldapdb.la

lrwxrwxrwx 1 root root 19 Jul 16 20:43 libldapdb.so -> libldapdb.so.2.0.19
lrwxrwxrwx 1 root root 19 Jul 16 20:43 libldapdb.so.2 -> libldapdb.so.2.0.19
-IwWXr-Xr-x 1 root root 94948 Jul 16 20:43 libldapdb.so0.2.0.19

Configuring Idapdb

As explained earlier in the “Adding Authentication to Servers” section, you
must create a SASL configuration for the Postfix smtpd daemon in /usr/1ib/
sasl2/smtpd.conf to make SASL available to Postfix.

NOTE

Here’s an example:

pwcheck_method: auxprop

auxprop_plugin: ldapdb

mech_list: PLAIN LOGIN DIGEST-MD5 CRAM-MD5
ldapdb_uri: ldap://mail.example.com
ldapdb_id: proxyuser

ldapdb pw: proxy secret

ldapdb_mech: DIGEST-MDS

log level: 7

The additional LDAP-related configuration parameters are ldapdb_id
and ldapdb_pw. The username here is the authorization ID. (Remember
that the ldapdb plug-in requires smtpd to use the authorization ID before
it can become the identity of the mail user and reauthenticate.)

Configuring the OpenLDAP Authorization Policy

You now have Postfix set up to bind to the OpenLDAP server, but you
still need to configure the OpenLDAP slapd to authenticate the user
and authorize it to become another user. First, select a policy that
defines how slapd should handle the authenticated users. Set the sasl-
authz-policy parameter in your slapd.conf file to one of the following
choices:

none Disables authorization. This is the default setting.

from Requires each LDAP user to explicitly permit one or more users to
act as the authorization ID. To allow authorization, they need to
add the saslAuthzFrom attribute to their own user object. This
attribute contains the dn (distinguished name) of the user that may
take their identity.

to Permits all users to act as an authorization ID by default. With this
policy, a user adds the saslAuthzTo attribute to their own user object,
which defines where it is permissible to take another user’s identity.
The LDAP directory administrator must create a rule that allows
only a limited number of users to assume other identities (to
prevent abuse).

both Activates both of the from and to policies.

You will find move detailed information in Chapter 10 of the “Open.LDAP
Administrator’s Guide” (http://www.openldap.org/doc/admin22/
sasl.htmI#SASL%20Proxy%20Authorization).

We'll use to as the policy in this book because we believe it is easier for
the administrator to limit who may take another identity than to add a new
attribute to each user object. To configure the policy for the example in this
chapter, add the following line to slapd.conf:

sasl-authz-policy to

A Company Mail Server 353

354

NOTE

Chapter 19

Configuring SASL OpenLDAP Binds

For the last step in enabling SASL-based binds to the OpenLLDAP server,
you need to configure slapd with the directory branch where credentials are
stored. You also need to specify the query attribute for the given authen-
tication ID. This is handled with a search filter called sasl-regexp that defines
where the smtpd bind (authorization ID) should search for users it wants to
authenticate.

Put the filter in your slapd.conf configuration file as follows:

sasl-regexp
uid=(.*),cn=.*,cn=auth
ldap:///dc=example,dc=com??sub?(&(objectclass=inetOrgPerson)(mail=$1))

The preceding regular expression does not look for a uid (login name), but rather, a
mail address. This is intentional; many ISPs and mail service providers use the email
addoess as the login name. There are many reasons for using the email address as the
login, but the top two are that users need lo memorize one less value, and it’s easier to
share authentication data with other systems, such as Radius servers.

After your filter is in place, restart your OpenLDAP server, check the log
for problems, and start testing.

Testing the Idapdb Plug-In

There are three points that you need to check in your ldapdb configuration:

¢ The mechanism limitation
e Direct SASL-based binding

¢ ldapdb-based authentication

Testing the Mechanism Limitation

Make sure that the mech_list parameter in your /usr/lib/sas12/slapd.conf
configuration is effective. Run ldapsearch as follows to list the mechanisms
that slapd offers to clients:

ldapsearch -LLL -x -s base -b "" "(objectClass=*)" supportedSASLMechanisms
dn:
supportedSASLMechanisms: DIGEST-MD5

If your output looks like this, you're in good shape. Otherwise check
your slapd.conf file for typos.

Testing Direct SASL Binds

Verify that a user in your directory can bind directly to slapd using SASL
(without the Idapdb plug-in) by using the 1dapwhoami command.

ldapwhoami -U bamm@example.com

SASL/DIGEST-MD5 authentication started

Please enter your password:

SASL username: bamm@example.com

SASL SSF: 128

SASL installing layers
dn:uid=bammbamm,ou=it,ou=people,dc=example,dc=com

This test verifies that you can actually authenticate as a user. If it fails,
you’'re not going to get any further. Refer back to the section “Configuring
SASL OpenLDAP Binds” to see if you made any mistakes.

Testing Idapdb Authentication

Cyrus SASL comes with utilities named server and client that allow you to test
authentication independent of other servers. Using them eliminates any side
effects that packages such as Postfix might introduce, and it allows you to
zero in on SASL-based problems, including those that involve Idapdb.

To test authentication, first create a symlink from smtpd.conf to
sample.conf for use by server:

cd /usr/lib/sasl2/
1n -s smtpd.conf sample.conf

Now, open a terminal window and start server:

./server -s rcmd -p 23

trying 10, 1, 6

socket: Address family not supported by protocol
trying 2, 1, 6

Open a second terminal window, and start client with the LDAP uid of a
user in your LDAP server. This program asks you for the authentication ID
and the authorization ID. Here’s how you would do it for bammbamm (dn:
uid=bammbamm,ou=it,ou=people,dc=example,dc=com):

./client -s rcmd -p 23 -m PLAIN mail.example.com
receiving capability list... recv: {31}
LOGIN PLAIN DIGEST-MD5 CRAM-MDs

LOGIN PLAIN DIGEST-MD5 CRAM-MDs5

please enter an authentication id: bammbamm
please enter an authorization id: bammbamm
Password:

send: {5}

PLAIN

send: {1}

Y

A Company Mail Server 355

356

NOTE

Chapter 19

send: {29}

bammbamm[0]bammbamm[0]bamm_secret
successful authentication

closing connection

The authorization ID will be veplaced by the value specified by the 1dapdb_id parameter
in your sample.conf file, but you still need to provide something at the prompt.

If you see successful authentication (as in the preceding output), Idapdb-
based authentication works. Otherwise, take a look at your authentication
log and the Cyrus SASL logs to figure out what went wrong.

Protecting Directory Data

For security reasons, you don’t want to make all data on your LDAP server
readable by anyone who queries the server. You can restrict read access on a
server by putting access control lists (ACLs) on users that bind to the LDAP
server. It's a two-step process:

1. Configure the LDAP server to limit read access.

2. Configure the LDAP-dependent packages to bind to the LDAP server.

Limiting Directory Read Access
In the earlier “Expanding the Directory” section, you added bind users
to your directory. Now you must tell slapd what parts of the directory the
bind users may access, as well as what other users (such as anonymous
users) may do.

Add the following rules to your /etc/openldap/slapd. conf file:

Access rules for saslAuthzTo
access to dn.subtree="dc=example,dc=com" attr=saslAuthzTo
by dn.base="cn=Manager,dc=example,dc=com" write
by * read
Access rules for userPassword
authenticated users (self) and the directory Manager may
change their (own) password.
anybody else may access the passwords during authentication
access to dn.subtree="dc=example,dc=com"
attr=userPassword

by self write
by dn.base="cn=Manager,dc=example,dc=com" write
by dn.base="uid=courierimap,ou=auth,dc=example,dc=com" read
by * auth

Access rules for uidNumber, gidNumber, mailbox, homeDirectory, quota
The only one to change their values is Manager.

Applications that need these values may read them.

Authenticated users may read their own data.

Anybody else may not access these data.

access to dn.subtree="dc=example,dc=com"
attr=uidNumber attr=gidNumber attr=mailbox attr=homeDirectory attr=quota

by dn.base="cn=Manager,dc=example,dc=com" write
by dn.base="uid=courierimap,ou=auth,dc=example,dc=com" read
by dn.base="uid=couriermaildrop,ou=auth,dc=example,dc=com" read
by dn.base="uid=postfix,ou=auth,dc=example,dc=com" read
by self read
by * none

Access rules for attributes mail, uid and maildrop
Applications may access these attributes.
Authenticated users may do so as well
Anybody else may read them as well
access to dn.subtree="dc=example,dc=com"
attrs=mail attr=uid attr=maildrop

by dn.base="uid=courierimap,ou=auth,dc=example,dc=com" read
by dn.base="uid=postfix,ou=auth,dc=example,dc=com" read
by dn.base="uid=1dapdb,ou=auth,dc=example,dc=com" read
by self read
by * read

Fallback rule
Any attribute that wasn't addressed above may be read by anyone.
access to * by * read

Restart your LDAP server after adding the rules.

This is a relatively simple ACL rule set that works well with the schema
and applications in this chapter. You can create finer access rules; have a
look at the slapd.access(5) manual page, or get one of the current LDAP
books.

Configuring Bind Users in LDAP Clients

With the OpenLDAP ACLs in place, you need to configure each of your
packages that access the LDAP server to connect as a bind user.

Configuring Postfix as a Bind User

To make Postfix connect to an LDAP server as a bind user, you must
change three parameters in the configuration files in /etc/postfix/1ldap.
The parameters are bind, bind_dn, and bind_pw:

¢ The bind parameter must be set to yes to enable the bind user.

e The bind_dn parameter sets the distinguished name of the bind user.
In this chapter’s example, you can set bind_dn = uid=postfix,ou=auth,
dc=example,dc=com.

e The bind_pw parameter sets the password (in plaintext).

You can see that you need to secure this data, because it contains a password. This is
the reason why we created a separate dirvectory for LDAP query configuration files at the
beginning of this chapter.

A Company Mail Server 357

358

CAUTION

CAUTION

Chapter 19

After you're finished, all of your configuration files in /etc/postfix/ldap
should contain lines like this:

bind = yes
bind_dn = uid=postfix,ou=auth,dc=example,dc=com
bind_pw = Yanggt!

Configuring Courier Maildrop as a Bind User

The Courier maildrop parameters are almost the same as those for Postfix,
except that there is no parameter to switch the bind system on (if you do
not specify a bind distinguished name, Courier won't try to bind). The
parameters that you’ll place in your /etc/maildropldap file are binddn and
bindpw; the configuration should look something like this:

binddn uid=couriermaildrop,ou=auth,dc=example,dc=com
bindpw Yrj6Hlér

Now that you have a password in plaintext, verify that /etc/maildropldap is accessible
only to root.

Configuring Courier IMAP as a Bind User

The last client that you need to configure as a bind user is Courier IMAP. As
with Courier maildrop, there are only two parameters that you need to set in
your /usr/lib/courier-imap/etc/authldaprc file—LDAP_BINDDN and LDAP_BINDPW:

LDAP_BINDDN uid=courierimap,ou=auth,dc=example,dc=com
LDAP_BINDPNW XsmYplép

As before, make sure that your IMAP LDAP configuration file (/usr/1ib/courier-
imap/etc/authldaprc) is accessible only by root.

Testing Server Restrictions

To test the servers, refer back to the section “Testing LDAP Recipients”™;
all you need to do is make sure that each component can retrieve data
from the LDAP server. If you run into problems, check your log files. In
particular, have a close look at the slapd log file. If you need to adjust
the slapd logging level, adjust the loglevel parameter as described in the
slapd.conf(5) manual page.

Encrypting LDAP Queries

Although you are now protecting the data on your LDAP server from
unauthorized users, you still haven’t done anything about keeping the data
safe when it is being transmitted over an insecure network. This section
shows you how to use TLS to protect the communication layer.

Configuring TLS for OpenLDAP

Before you try to configure TLS for your installation of LDAP, verify that
slapd supports TLS. Running ldd on slapd usually shows dependencies on the
SSL library if TLS is supported:

1dd /usr/sbin/slapd
libslapd_db-4.1.s0 => /usr/lib/libslapd_db-4.1.so0 (0x00116000)
libsasl2.s0.2 => /usr/lib/libsasl2.so.2 (0x00101000)
libkrb5.s0.3 => /usr/lib/libkrb5.s0.3 (0x00a6f000)
libkscrypto.so.3 => /usr/lib/libk5crypto.so.3 (0x00ad8000)
libcom_err.so.2 => /lib/libcom_err.so.2 (0x00a6a000)
libssl.so0.4 =»> /1ib/libssl.so.4 (0x00b11000)
libcrypto.so.4 => /1lib/libcrypto.so.4 (0x00977000)
libcrypt.so.1 => /1ib/libcrypt.so.1 (0x008d0000)
libresolv.so.2 => /1lib/libresolv.so.2 (0x00965000)
libdl.so0.2 => /lib/libdl.so0.2 (0x008b8000)
libwrap.so.0 => /usr/lib/libwrap.so.0 (0x00bfe000)
libpthread.so.0 => /1lib/libpthread.so.0 (0x00912000)
libc.so.6 => /lib/libc.so.6 (0x0076e000)
libgssapi_krb5.so0.2 => /usr/lib/libgssapi_krb5.so.2 (0x00afc000)
libz.so.1 => /usr/lib/libz.so.1 (0x008bd000)
/1ib/1d-1inux.s0.2 => /1lib/1d-linux.so0.2 (0x00759000)
libnsl.so.1 =»> /lib/libnsl.so.1 (0x008fe000)

You will need to perform the following steps to configure slapd with TLS:

1. Create X509 certificates for slapd.
2. Configure slapd to offer TLS.
3. Configure the LDAP clients to use TLS.

Creating X509 Certificates for slapd

As with any server that offers SSL-derived encryption, you must create
certificates for slapd that contain public and private keys. Chapter 17
explains how to create the certificates.

Assuming that you run your own CA, you could create a private key file
named slapd_private_key.pem for slapd as follows:

openssl req -new -nodes -keyout slapd_private_key.pem -out \
slapd_private_key.pem -days 365

The corresponding command to create a public key named
slapd_public_cert.penm is as follows:

openssl ca -policy policy_anything -out slapd _public_cert.pem -infiles \
slapd_private_key.pem

A Company Mail Server 359

360

CAUTION

NOTE

Chapter 19

Now create a subdirectory named certs for your keys in /etc/openldap.
After copying the .pen files into the subdirectory, it should look like this:

1s -la /etc/openldap/certs/

total 24

drwx------ 2 ldap 1dap 4096 Jun 21 22:31 .

drwxr-xr-x 4 root root 4096 Jun 21 23:12 ..

“TW------- 1 ldap ldap 1624 Jun 21 22:31 slapd_private_key.pem
“TW------- 1 ldap ldap 3807 Jun 21 22:31 slapd_public_cert.pem

Make sure that you change the ownership and permissions of the files so that they are
accessible only to the user that runs slapd.

Configuring slapd to Offer TLS

To tell slapd about your new certificate files, you need to add four parameters
to your slapd. conf file:

TLSCACertificateFile /usr/share/ssl/certs/cacert.pem
TLSCertificateFile /etc/openldap/certs/slapd_public_cert.pem
TLSCertificateKeyFile /etc/openldap/certs/slapd_private_key.pem
TLSVerifyClient demand

The TLSCACertificateFile parameter specifies the location of the CA
certificate. In this example, slapd looks at a single file for this certificate,
but you may need more than one file. If this is the case, you can omit the
filename and have slapd search the entire directory. You will also need to
use ¢_rehash from the OpenSSL utilities to index the directory, as described
in Chapter 18.

Your CA certificates should be in a location that the rest of the LDAP clients can access.

You can set the TLSVerifyClient parameter to one of never, allow, try, or
demand to restrict access for certain kinds of authentication. You need to make
sure that the TLS settings work on the client side, so set this parameter to
demand to force clients to use TLS. This makes it easy to find out whether the
clients support it.

Configuring TLS for LDAP Clients

This section shows you how to turn on client-side LDAP support in Postfix
and Courier IMAP. At the moment, Courier maildrop cannot do TLS, but
this isn’t really a problem, because the LDA doesn’t need to know any user
passwords.

Turning On Postfix LDAP Support
Postfix needs its own public certificate and private key to access the LDAP

server over TLS. You should have already created the key files in Chapter 17,
s0 you can reuse them,

To enable TLS over LDAP, you must add the following parameters to all
LDAP query configuration files in /etc/postfix/ldap:

version = 3

tls_ca_cert_file = /usx/share/ssl/certs/cacert.pem
tls_cert = /etc/postfix/certs/postfix_public_cert.pem
tls_key = /etc/postfix/certs/postfix_private_key.pem
start tls = yes

The parameters work as follows:
version

Sets the version of the LDAP protocol. By default, Postfix uses version 2,

but TLS requires version 3.
tls_ca_cert_file

Specifies the CA certificate.
tls_cert

Specifies the public certificate for Postfix.
tls_key

Specifies the private key for Postfix.
start_tls

Enables TLS.

Enabling LDAP Queries for Courier IMAP

To enable LDAP over TLS for Courier IMAP, you need to follow a config-
uration strategy different from that of Postfix because Courier does not come
with its own LDAP client, but rather uses the one that comes with OpenLDAP.
You need to configure the OpenLDAP client to use TLS, and then tell Courier
IMAP to request LDAP over TLS from the OpenLDAP client.

The OpenLDAP client configuration file is usually /etc/openldap/
ldap.conf. You need to add the following TLS_* parameters to enable TLS
support:

URI 1ldap://mail.example.com

BASE dc=example,dc=com

TLS _CACERT /usr/share/ssl/certs/cacert.pem
TLS_CERT /etc/openldap/certs/slapd public cert.pem
TLS_KEY /etc/openldap/certs/slapd_private_key.pem
TLS_REQCERT demand

The parameters are similar to the ones for Postfix:
TLS_CACERT

Specifies the CA certificate that the rest of the packages in this chapter use.
TLS_CERT

Specifies the client’s public certificate.

A Company Mail Server 361

362

Chapter 19

TLS_KEY
Specifies the client’s private key. If you like, you can reuse the slapd cer-
tificate and key.

TLS_REQCERT

Specifies the policy for requesting the server certificate. Set it to demand in
order to force TLS or drop the connection.

Because you already told the OpenLDAP client about the certificate
and keys, you just need to tell Courier IMAP to request TLS for LDAP in
your /usr/lib/courier-imap/etc/authldaprc file:

LDAP_TLS 1

With this final piece in place, you can restart Courier IMAP and test it.

Testing TLS

The TLS parameters that you just added to your configuration added a lot of
complexity, so it's important that you test it carefully.

1. Test the application all others turn to—the LDAP server. Test the LDAP
server’s own client.

2. If that works, turn to Postfix and see if it can connect. Verify that Courier
IMAP is able to use the LDAP client to get SSL.

Testing the OpenLDAP Server
The first test is to make sure that the OpenLDAP server offers TLS
certificates. There really isn’t any simple command for checking this on
port 389 (where you normally find TLS1 for LDAP). We'll see if we can go
to port 636 (where OpenLLDAP offers SSL) to see if slapd will be satisfied
with the certificates.

Use the s_client utility to connect to the server as follows:

openssl s_client -CAfile /usr/share/ssl/certs/cacert.pem -connect localhost:636
CONNECTED (00000003)
depth=1 /C=EX/ST=Examplia/L=Exampleton/O=Example Inc./OU=Certification
Authority/\
CN=mail.example.com/emailAddress=certmaster@example.com
verify return:1
depth=0 /C=EX/ST=Examplia/L=Exampleton/O=Example Inc./OU=LDAP services/\
CN=mail.example.com/emailAddress=1dapmaster@example.com
verify return:1
Certificate chain
0 s:/C=EX/ST=Examplia/L=Exampleton/0O=Example Inc./OU=LDAP services/\
CN=mail.example.com/emailAddress=1dapmaster@example.com
i:/C=EX/ST=Examplia/L=Exampleton/0=Example Inc./OU=Certification Authority/\
CN=mail.example.com/emailAddress=certmaster@example.com
1 s:/C=EX/ST=Examplia/L=Exampleton/O=Example Inc./OU=Certification Authority/\

CN=mail.example.com/emailAddress=certmaster@example.com

i:/C=EX/ST=Examplia/L=Exampleton/O=Example Inc./OU=Certification Authority/\

CN=mail.example.com/emailAddress=certmaster@example.com

Server certificate

MIIEDDCCA3WgAWIBAgIBAjANBgkqhkiGow0oBAQQFADCBSDELMAKGAIUEBhMCRVEX
ETAPBgNVBAgTCEV4YW1wbG1hMRMWEQYDVQQHEwWpFeGFtcGx1dG9uMRUWEWYDVQOK
EwxFeGFtcGx1IE LuYy4xIDAeBgNVBAs TFONLcnRpZmljYXRpb24gQXV0aGoyaXR5
MRkwFwYDVQQDExBtYWLsLmV4YWiwbGUuY29tMSUWIWYIKoZIhvcNAQkBFhZjZXJ0
bWFzdGVyQGV4YW1wbGUuY29tMB4XDTAOMDCxMzEZNTQWN1oXDTAIMDcxMzEZNTQw
NlowgaYxCzAJBgNVBAYTAKVYMREWDWYDVQQIEwhFeGFtcGxpYTETMBEGALUEBXMK
RXhhbXBsZXRvbjEVMBMGALUEChMMRXhhbXBsZSBIbmMuMRYwFAYDVQQLEwW1MREFQ
THN1cnZpY2VzMRkwFwYDVQQDExXBtYW1sLmV4YW1wbGUuY29tMSUwIwYIKoZIhveN
AQkBFhZsZGFwbWFzdGVyQGV4YW1wbCGUuY29tMIGTMAOGCSqGSIb3DOEBAQUAAAGN
ADCBi0KBgODcqVcyPn4qhI65sAdPgu+Et2vzisyHT/IT39mZ6Gqrhi50a/eQA7Lz
GmUKR/t/W40128ygN/udpkHZiTUDJUCSENF7kgk4vnx/4DpwmDmOjNg07]JEXOFL
c011/KqZzAItBh32KtIhV8BQcdlfzdoxEqo7MkxRwipu7LyLo5q0kwIDAQABO4IB
PDCCATgwCQYDVROTBAIWADAsBglghkgBhvhCAQOEHXYdT3B1bINTTCBHZWS lemFo
ZW0g02VydG1maWNhdGUWHQYDVROOBBYEFCKdRZglsm4/1i0251tD1riyCE+KMIHd
BgNVHSMEgdUwgdKAFMNGZ7 /NoxrS6WpI01Z2ThDno97iXoYG2pIGzMIGWMOswCQYD
VOOGEwWIFWDERMASGA1UECBMIRXhhbXBsaWEXEzARBgNVBACTCkV4YW1wbGYOb24x
FTATBgNVBAOTDEV4YW1wbGUgSW5 jLjEgMBAGALUECxMX02VydGlmakNhdGlvbiBB
dXRob3JpdHkxGTAXBgNVBAMTEG1haWwuZXhhbXBsZS5jb20x1TAjBgkqhkiGowoB
COEWFmN1cnRtYXNOZXIAZXhhbXBsZS57b22CAQAWDQYIKoZIhvcNAQEEBOADEYEA
AZCH5A23WVdId09NkD23Bz3HF+My0f8fUx1CaQblwo572mjgB/03H7K969bU/ te2
Bel0jifMo/vexXPMeajwzDnIKm/y]07eNt85eeKciI6MZIVhvuPvtp/Re5vArcas
HNgpmm70DAEFIRc1Hs fhsyAHwsTTr18UGndfL3Hetkw=
----- END CERTIFICATE-----
subject=/C=EX/ST=Examplia/L=Exampleton/O=Example Inc./OU=LDAP services/\
CN=mail.example.com/emailAddress=1dapmaster@example.com
issuer=/C=EX/ST=Examplia/L=Exampleton/0=Example Inc./OU=Certification
Authority/CN=mail.example.com/emailAddress=certmaster@example.com

Acceptable client certificate CA names

/C=EX/ST=Examplia/L=Exampleton/O=Example Inc./OU=Certification Authority/\

CN=mail.example.com/emailAddress=certmaster@example.com

SSL handshake has read 2402 bytes and written 352 bytes
New, TLSv1/SSLv3, Cipher is AES256-SHA
Server public key is 1024 bit
SSL-Session:
Protocol : TLSvi
Cipher : AES256-5HA
Session-1ID:
21430E35213A797176B28B16BF24D20EC9019902B5B09FCEDDA0333682FD6F7D
Session-ID-ctx:
Master-Key:
45636217FD3136A536CE62618DBC1CA92E6EOB1E773F75120632F761C289943BB\
85F78369C622A0D78DB60726147465F
Key-Arg : None

A Company Mail Server

363

364

Chapter 19

Krbs Principal: None
Start Time: 1089733870
Timeout : 300 (sec)
Verify return code: 0 (ok)

QUIT
DONE

If you get a return code of 0 (ok), the certificates check out. Now you can
test whether you can use the LDAP client to query the server over TLS.

Testing the OpenlDAP Client

To see whether the OpenLDAP client works, try to retrieve data with the
ldapsearch command as follows:

ldapsearch -ZZ -x -LLL "(mail=bamm@example.com)" userPassword
dn: ou=people,dc=example,dc=com

dn: ou=it,ou=people,dc=example,dc=com

dn: uid=bammbamm,ou=it,ou=people,dc=example,dc=com
userPassword:: YmFtbV9zZWNyZX0Q=

This 1dapsearch command is particularly useful because it reads the
default settings in ldap.conf; recall that the Courier IMAP TLS/LDAP con-
figuration depends on these. Furthermore, this query mimics a Courier
IMAP query. The -ZZ option forces ldapsearch to use TLS.

If this command doesn’t work, have a close look at your 1ldap.conf file and
your logs.

Testing Postfix

To test Postfix’s LDAP over TLS support, run a postmap command to query
the directory for a known recipient. Here’s an example from this chapter:

postmap -q "bamm@example.com” ldap:/etc/postfix/ldap/local_recipients.cf
bammbamm

If this doesn’t work, see if it works without TLS support. After you've got
it working, re-enable the TLS settings and set the debuglevel in your Postfix
LDAP configuration file (for example, /etc/postfix/ldap/local_recipients.cf)
to at least 1, so that you can pore over some descriptive logging information.

Testing Courier IMAP

You just tested some of the underpinnings of the Courier IMAP config-
uration in the “Testing the OpenLDAP Client” section. To verify that
everything works, connect to the IMAP port and log in as you did in the
section “Testing the IMAP Server.” A successful login looks like this:

telnet mail.example.com 143
* OK [CAPABILITY IMAP4revi UIDPLUS CHILDREN NAMESPACE \
THREAD=ORDEREDSUBJECT THREAD=REFERENCES SORT QUOTA \

IDLE ACL ACL2=UNION STARTTLS]
Courier-IMAP ready. Copyright 1998-2004 Double Precision, Inc.\
See COPYING for distribution information.

. login bamm@example.com bamm_secret

. OK LOGIN Ok.

. logout

* BYE Courier-IMAP server shutting down

. 0K LOGOUT completed

Enforcing Valid Sender Addresses

Once users successfully connect to the Postfix server with SMTP authen-
tication, they can relay messages through your server using any sender
address that they desire. If you don’t really trust your users that much, you
can use a restriction called reject_authenticated_sender_login_mismatch,
introduced in Postfix 2.1, that tells Postfix to enforce valid sender addresses.
It works like this:

The user connects with a username using SMTP authentication.

Mo

When the user attempts to send a message, Postfix extracts the
envelope-sender.

3. Postfix looks up the envelope sender in the maps configured with
smtpd_sender_login_maps. Ideally, this is an LDAP-based map.

4. If the lookup returns the same username that was used for SMTP
authentication, Postfix accepts the message. Otherwise Postfix rejects
the message.

Creating the LDAP Map

You already have all of the data for the smtpd_sender_login_maps map in your
directory, so it makes sense to reuse it, not only because you need no
additional data, but also because there is no additional maintenance work.
To set up the map, create a new file in /etc/postfix/ldap with the settings that
you need for the query.

When you specify the attributes to be retrieved from the LDAP server as
usernames, you can choose to permit only mail addresses used in mail
attributes or to also allow senders to use their aliases (which are stored in the
maildrop attribute).

Let’s say that you want to create a configuration that permits both in the
query file named /etc/postfix/ldap/mail_from login.cf. Assuming that you
have TLS enabled, the complete file should look like this:

version = 3

debuglevel = 0

server_host = ldap://mail.example.com

tls ca cert file = /usr/share/ssl/certs/cacert.pem
tls_cert = /etc/postfix/certs/postfix_public_cert.pem

A Company Mail Server 365

366

NOTE

Chapter 19

tls_key = /etc/postfix/certs/postfix_private_key.pem
tls random file = /dev/urandom

start_tls = yes

bind = yes

bind_dn = uid=postfix,ou=auth,dc=example,dc=com
bind_pw = Yanggt!

search_base = ou=people,dc=example,dc=com

query filter = (|(mail=%s)(maildrop=%s))
result_attribute = mail

The only two parameters here that should be different from the other
files in /etc/postfix/ldap are query filter and result_attribute.

With the query map file in place, set the smtpd_sender_login_maps
parameter in your main.cf file as follows:

smtpd_sender_login_maps = ldap:/etc/postfix/ldap/mail from_login.cf

Configuring the smtpd Restriction

Finally, put everything in place for restricting senders to their own mail
addresses by adding the reject_authenticated_sender_login_mismatch parameter
to the list of restrictions in your main.cf file:

smtpd_recipient restrictions =
permit_mynetworks
reject_authenticated_sender_login_mismatch
permit_sasl_authenticated
reject_unauth_destination

This restriction applies only to users that have authentication, but it does not apply to
anyone else. Therefore, users in your trusted networks can send mail as anyone they
please. Furthermore, incoming mail from the vest of the Internet still works.

Testing the smtpd Restriction

To test your new configuration, first see if the map works. Use postmap to
match a regular recipient as follows:

postmap -q "bamm@example.com" ldap:/etc/postfix/ldap/mail_from login.cf
bammbamm

If you are permitting aliases as sender addresses, use postmap to query for
an alias:

postmap -q "postmaster@example.com” ldap:/etc/postfix/ldap/mail_from login.cf
bammbamm

If this works, the last thing you need to test is an actual SMTP session.
First, prepare a base64-encoded authentication string for the first stage of
the connection:

perl -MMIME::Base64 -e \
'print encode_base64("bamm\@example.com\Obamm\ @example.com\Obamm_secret");’
YmFtbUBleGFtcGx1LmNvbQBiYW1tOGV4YW1wbGUUY29tAGIhbW1fc2VicmVo

Now, connect from a remote host to your Postfix server and authenticate
using this string:

telnet mail.example.com 25

220 mail.example.com ESMTP Postfix

EHLO client.example.com
250-mail.example.com

250-PIPELINING

250-SIZE 10240000

250-VRFY

250-ETRN

250-AUTH PLAIN LOGIN CRAM-MD5 DIGEST-MDS
250-AUTH=PLAIN LOGIN CRAM-MD5 DIGEST-MDS5
250 8BITMIME

AUTH PLAIN YmFtbUBleGFtcGx1LmNvbOBiYW1tQGV4YWiwbGUuY29tAGIhblW1fc2VjcmVo
235 Authentication successful

Now, try to send a message as a different user (recall that you
authenticated as Bamm Bamm):

MAIL FROM: <rubble@example.com>

250 Ok

RCPT TO: <wietse@porcupine.org>

553 <rubble@example.com>: Sender address rejected: not owned by user
bamm@example . com

Postfix detects the mismatch in the RCPT TO stage, because this is where
the smtpd_recipient_restrictions parameter takes effect.

You should also try sending as the real user as well. If this works, there’s
nothing left to do. You're finished. Have fun!

A Company Mail Server 367

RUNNING POSTFIX
INACHROOT ENVIRONMENT

The chroot feature adds just another barrier against intrusion;
that barrier is meaningful only when the host is already running
in a hardened configuration.—Wietse Venema

Running Postfix in a chroot jail isolates it
from the entire directory structure of the
operating system. The goal is to protect the

system from the intruder who manages to break
into Postfix. In order to use this feature, you must lock
a minimal number of files, applications, and other
resources into a chroot jail directory.

Setting up a chroot jail requires no external programs, The distribution
contains helper scripts that set up an appropriate chroot environment. This
chapter both describes the theory of chroot environments and provides an
SASL/TLS example that shows how chroot and Postfix actually work
together.

370

The chroot scripts that come with Postfix can be found in the examples/
chroot-setup directory of the source tree. If you use prepackaged Postfix
binaries, the packager probably added a few scripts that keep the contents of
the chroot jail directory in sync with the filesystem outside of the jail.

The foolproof procedure for setting up a chroot jail is as follows:

Get things working without using chroot.

o

Convert Postfix daemons to a chroot setup, one at a time.

If you use this procedure, you can easily identify any daemons that break
when chrooted and adjust the contents of the jail directory accordingly.

How Does a chroot Jail Work?

Chapter 20

Imagine a burglar breaking a window to get into your house, but that window
belongs to a high-security room. Not only does the room contain nothing of
value, but the items in the room will not help the burglar get further into the
house. The burglar has no choice but to give up.

For this to work, the architect must make sure that only things that are
absolutely necessary are located in this high-security room. Furthermore,
these items must be properly secured so they cannot be turned against the
high-security room itself.

A chroot jail under Unix is much like this high-security room.

Basic Principles of a chroot Setup
These are the basic principles of a chroot setup:

Use the lowest privileges required to run applications
The more powerful the user, the more they can harm the system. In par-
ticular, root and programs running as root can break out of the chroot
jail fairly easily. Therefore, programs running in the chroot jail should
not run with superuser privileges, but with the lowest privilege level
required to get their jobs done.

Drop privileges correctly
An application that provides a service offered on a low-numbered port,
such as port 25, may need to be started as root in order to get access to
the port. However, after the application gets what it needs, it should
drop special access privileges correctly.

Keep the jail small and bare
Keep only the bare minimum of files in a chroot jail. The fewer there
are, the less likely it is that you will provide an intruder with something
to abuse.

Make the files in the jail owned by root and writable by root only

Applications running in the chroot jail should not be able to alter files
within the jail. Change ownership and write permissions to root only.

Link configuration files from the outside
Symbolic links from inside the jail to files outside of it will not work for
the system running inside the jail. Some systems share a configuration
file between the jailed daemon and other utilities that are run from user
mode. This requires all of the daemons to be able to access the configu-
ration file, whether they are inside or outside the jail. Rather than
rebuilding these utilities to use a special path (such as /chroot/named/etc/
named.conf) you can create a symbolic link from outside to inside the jail, as
in this example:

1ln -s /chroot/named/etc/named.conf /etc/named.conf

This allows most of the tools to operate normally, but you have to be
a little more careful when editing files such as /etc/named. conf, because
when you do so, you're affecting a jailed system.

Technical Implementation

The daemons chroot and drop privileges by themselves. This allows them to
access /etc/postfix files (and open maps) before going to jail.

The chroot() system call alters how a process—after entering the chroot
jail—perceives the filesystem to a process. Here’s how it works:

The master daemon calls chdir(queue_directory).

2. The master daemon invokes the other Postfix daemons, telling each of
them whether or not it should change the file system root or drop its
privileges.

Except in very limited circumstances, it’s impossible to escape this jail.

How Does chroot Affect Postfix?

When you run Postfix in a chroot jail, it affects the way Postfix sees the
filesystem. Let’s say that you chrooted to /var/spool/postfix. Although any
other application may be able to see /var/spool/postfix (the queue directory)
and anything else on the system, the Postfix daemons consider /var/spool/
postfix to be / once they start chrooted. They can’t access anything else
outside of /var/spool/postfix.

This may require you to copy several files into the Postfix jail that are out
of reach to the daemons that run chrooted:

Binaries (daemons)
You don’t need to copy daemons into the chroot jail, because they are
launched by the master daemon, which isn’t chrooted.

Libraries needed by binaries
Programs load libraries before going to the jail, so you won’t need to
copy them to the jail.

Running Postix in a chroot Environment 3?]

372

Chapter 20

Maps
Programs open static maps before going into the jail. However, you may
need to create a socket in the chroot jail for database-driven maps (see
the sockets point in this list).

Configuration files
The daemons read configuration files before going to the jail. There’s
no need to copy them into the jail.

Sockets
Socket files, such as the mysql socket or the SASL socket, need to be
accessible to daemons inside the jail. Keep in mind that the MySQL cli-
ent library may look for the socket in a place such as /var/run/
mysql.socket, so you will need to put it in a place such as queue_directory/
var/run/mysql.socket.

Files needed by libraries
The C library needs to look at files such as /etc/resolv.conf and /etc/
localtime to work properly. You need to install copies of these files in /
var/spool/postfix.

Helper Scripts for chroot

Postfix comes with several helper scripts in the examples/chroot-setup
directory of the source tree. These scripts assist you in setting up a chroot

jail for your particular operating system.

When you run Postfix chrooted, it checks that the basic required files,
such as /var/spool/postfix/etc/resolv.conf, are present and up-to-date
in the chroot jail. Postfix writes warnings to the log file if files inside and
outside the chroot jail are out of sync. It’s very important that you heed
these warnings and act to fix the inconsistencies.

chrooted Daemons

Because the master daemon starts the rest of the Postfix daemons, it is the
one that tells the daemons to run chrooted or not. You control chroot
invocation in /etc/postfix/master.cf.

Enabling chroot

To run a daemon chrooted, you need to identify the service that invokes it in
the master.cf file. Check the chroot column in master.cf to find the current
chroot state of the daemon. Postfix SOURCE ships with every daemon set to
n, but some distributions change that in their Postfix packages. That is, none
of the daemons in a stock installation runs chrooted. To change it, change
the chroot option from n or - to y.

For example, if you want to chroot the smtpd daemon, your configuration
file might look like this:

=== - - - - - - - - - —
service type private unpriv chroot wakeup maxproc command + args

(yes) (yes) (yes) (never) (100)

=== == = = = == == == = = ====
smtp inet n - y - - smtpd

#smtps inet n - n - - smtpd

-o smtpd_tls_wrappermode=yes -o smtpd_sasl auth_enable=yes

pickup fifo n - n 60 1 pickup

cleanup unix n - n - 0 cleanup

Notice that the chroot column entry for the smtp service has been
changed to y. The master daemon will run this service chrooted after you
reload Postfix.

chroot Limitations and Task Delegation

The documentation within master.cf indicates that you can run almost any
daemon chrooted “except for the pipe, virtual, and local daemons™

pipe
The pipe daemon spawns external programs, usually located outside the
Postfix queue directory, and it therefore usually need files outside the
queue directory.

local
The local daemon takes care of local delivery and needs to have access to
user home directories. It doesn’t make much sense to run local
chrooted, because this would imply that the home directories are below
/var/spool/postfix, inside the chroot jail, where an intruder could possi-
bly gain access to them.

virtual

The virtual daemon takes care of local delivery, just like the local dae-
mon. The logic against running the local daemon chrooted holds for
this daemon too.

When using a chroot environment, other daemons may need to use the
proxymap daemon in order to gain access to configuration data. For example,
if a chrooted SMTP server needs access to the system passwd file in order to
reject mail for nonexistent local addresses, it wouldn’t be practical to main-
tain a copy of the passwd file in the chroot jail, because this would undermine
the whole idea of running Postfix chrooted.

Running Postix in a chroot Environment 3?3

To keep security-related maps out of the jail, you can delegate lookups to
the proxymap daemon (again, not running chrooted) with this configuration
parameter:

local recipient maps = proxy:unix:passwd.byname $alias maps

Keep in mind that because proxymap goes through the barrier of the jail,
proxymap cannot proxy maps used in a security relevant context.

chroot Libraries, Configuration Files, and Other Files
Many programs need external files to function correctly. These files include:

e Libraries and other shared objects
¢ Configuration files

e Other files, such as socket devices

There are several ways of finding out which files a program needs. To
find shared library dependencies, you can use ldd or chatr on most Unix
variants. However, this will not be a problem with a standard Postfix
installation, because all daemons are started and load their libraries before
going into the chroot jail.

To find out what configuration files you need, use a program such as
strace (on Linux), truss (on Solaris), or ktrace (on other Unix variants). One
way of using strace is to start a program like this:

strace -o ouputfile program

Then inspect the file output for open() calls:

grep open outputfile | grep ENOENT
open("/etc/1d.so.preload", O RDONLY) =
open("/usr/share/locale/C/1libdst.cat",

-1 ENOENT (No such file or directory)
0_RDONLY) = -1 ENOENT (No such file or directory)

open("/usr/share/locale/C/LC_MESSAGES/libdst.cat",
open("/usr/share/locale/C/1libdst.cat", O _RDONLY) =
open("/usr/share/locale/C/LC_MESSAGES/libdst.cat",
open("/usr/share/locale/C/libisc.cat", O_RDONLY) =
open("/usr/share/locale/C/LC_MESSAGES/libisc.cat",
open("/usr/share/locale/C/libisc.cat", O_RDONLY) =
open("/usr/share/locale/C/LC_MESSAGES/libisc.cat",
open("/usr/share/locale/C/1libdns.cat", O _RDONLY) =
open("/usr/share/locale/C/LC_MESSAGES/libdns.cat",
open("/usr/share/locale/C/libdns.cat",

374

Chapter 20

0 _RDONLY) =
open("/usr/share/locale/C/LC_MESSAGES/1libdns.cat",

0 _RDONLY) = -1 ENOENT (No such file or directory)

-1 ENOENT (No such file or directory)
0_RDONLY) = -1 ENOENT (No such file or directory)
-1 ENOENT (No such file or directory)
0_RDONLY) = -1 ENOENT (No such file or directory)
-1 ENOENT (No such file or directory)
0 _RDONLY) = -1 ENOENT (No such file or directory)
-1 ENOENT (No such file or directory)
0_RDONLY) = -1 ENOENT (No such file or directory)
-1 ENOENT (No such file or directory)
0 _RDONLY) = -1 ENOENT (No such file or directory)

NOTE Keep in mind that a program may try to open several versions of a configuration file
before finding the correct one.

Alternatively, you can attach strace to a running process to see what it
is trying to do. For example, if you'd like to see what the master daemon is
doing, try something like this:

ps auxwww|grep master

root 9004 0.0 0.3 3452 940 ? S 07:49 0:00 /usr/lib/postfix/master
strace -p 9004

Process 9004 attached - interrupt to quit

select(76, [10 11 12 15 17 18 21 23 24 26 27 29 30 32 33 35 36 38 39 41 42 44
45 47 48 50 51 53 54 56 57 59 60 62 63 65 66 68 69 71 72 74 75], [], [10 11 12
15 17 18 21 23 24 26 27 29 30 32 33 35 36 38 39 41 42 44 45 47 48 50 51 53 54
56 57 59 60 62 63 65 66 68 69 71 72 74 75], {22, 790000} <unfinished ...>
Process 9004 detached

Overcoming chroot Restrictions

The scripts that help you set up a chroot jail in the Postfix source distribution
(in examples/chroot-scripts) can also tell you which system files you might
need to copy into your chroot jail, such as the time zone files required by the
C library. The following is an overview of the files you will need.

DNS
The C library needs certain files to implement name resolution
correctly; for example, you need /etc/resolv.conf, /etc/nsswitch.conf,
and /etc/hosts on a Linux system. These need to be inside the chroot
jail, and the helper scripts can copy them for you.

Time settings
If you find that the logging produced by your Postfix daemon is off by
several hours, you need to copy the time zone information (/etc/local-
time) into the chroot jail.

Sockets
You can configure Postfix and saslauthd easily to work inside a Postfix
chroot environment. All you need to do is configure Postfix and saslau-
thd with different paths for saslauthd’s socket.
In the Postfix chroot jail (usually /var/spool/postfix), first create all
required run_path subdirectories:

mkdir /var/spool/postfix/var

mkdir /var/spool/postfix/var/run

mkdir /var/spool/postfix/vax/run/saslauthd

chmod 750 /var/spool/postfix/var/run/saslauthd
chgrp postfix /var/spool/postfix/var/run/saslauthd

H O O H R

Running Postix in a chroot Environment 3?5

376

Chapter 20

Now, add the saslauthd_path parameter to /usr/lib/sasl/smtpd.conf,
which tells the chrooted smtpd where to look for the socket. Cut off the
path that leads to the jail (that is, leave off /var/spool/postfix), and
provide the path of the run_path, including the socket name (mux) as
the value:

saslauthd_path: /var/run/saslauthd/mux

Finally, start saslauthd with the -m option, which defines where to
create the socket. Give it the full path as seen outside the jail:

/usr/sbin/saslauthd -m /var/spool/postfix/var/run/saslauthd/mux -a shadow

This way, both applications use the same socket to communicate,
even though Postfix is running chrooted.

PART IV

TUNING POSTFIX

This part of the book provides hints on how to improve
the performance of your server. Starting from common-
place problems, such as DNS caching and being an
open relay, we progress to advanced concepts, including
how to avoid bouncing undeliverable mail and setting
up dedicated transports. You can employ blacklists to
reduce the inflow of mail, and the experimental rate-
limiting features of Postfix 2.1 are also worth looking at.
Remote Client Concurrency and Request Rate Limiting

Chapter 21 shows you a new feature for limiting the rate of client con-

nections. This is a countermeasure for protecting Postfix from SMTP

clients that inundate the smtpd daemon with too many connections
at once.

Performance Tuning
Postfix is fast, but sometimes you can tune it to become even faster.
You should read Chapter 22 if your Postfix does not perform as well
as you think it should.

REMOTE CLIENT CONCURRENCY
AND REQUEST RATE LIMITING

Q
\y
client concurrency and rate limits. Rate

\‘ limiting is a countermeasure for protecting
Postfix from SMTP clients that inundate the smtpd
daemon with too many connections at once. This
chapter illustrates several instances where rate limiting
is useful and shows you how to configure it.

Postfix 2.1 and 2.2 implement remote

The Basics of Rate Limiting

Even a well-tuned Postfix installation can handle only a finite amount of
email traffic at one time. A server’s capacity depends on parameters such as
disk I/O throughput, CPU speed, and the speed of any virus scanners that
are connected to Postfix. Before Postfix 2.1, it was possible for a single client
to use all of the available smtpd Postfix server processes, locking out all other
clients trying to deliver mail.

380

Hardware limitations, clients eating up connections, and complex
configurations are enough to justify limiting the amount of incoming mail.
However, there are other situations where rate limiting prevents mail
deferral or otherwise lessens the ill effects on Postfix:

Virus and worm outbreaks
New viruses and worms spreading across a network normally attempt to
propagate themselves as quickly as possible. Rate limiting slows the
spread of malicious software by throttling the propagation speed.

Mail bombs
Mail bombs are large, continuous bursts of mail, usually sent from a sin-
gle system to your system. Usually this happens with malicious intent, but
it can also happen by accident. (For example, we've seen an antivirus
product send one message per infected file—when this happens on a
thoroughly infected system, your mail server may be flooded with more
than 100 messages per minute.)

Runaway clients
The term “runaway client” is a generalization that includes virus or worm
outbreaks and mail bombs; it refers to any client that is out of control,
sending continuous stream of mails to your system. The client is not nec-
essarily malicious—the problem could be caused by a programming or
configuration error.

Spam from open proxies
Open proxies are popular with spammers as a tool to disguise the origin
of their mail. When rate limiting restricts messages from an open proxy,
Postfix refuses incoming messages from an open proxy with a temporary
error code. Because the proxy has no queuing mechanisms of its own, it
does not retry delivery, so large inflows of spam from open proxies do
not make it to your system.

To use rate limiting, you must gather statistics and adjust several param-
eters to influence how many successive and simultaneous connections clients
may make to the smtpd daemon. You'll see how to do this in the following
sections.

Gathering Rate Statistics

NOTE

Chapter 21

Before you can start limiting client connections, you must know which clients
connect and how many successive and simultaneous connections they
initiate during normal operation. The anvil daemon keeps track of clients
for you, maintaining connection statistics and recording maximum
connection counts and rates.

Recording client-connection statistics is useful beyond the implementation of rate limit-
ing. For example, you can read this information into a log-watching program that in
turn updates firewall rules to block those runaway clients. Rate limiting is relatively
new to Postfix, so as of this writing there are no popular programs that do this.

Running the anvil Daemon

Like other Postfix daemons, anvil is controlled by the master daemon.
Although anvil is enabled by default, you should examine your master.cf file
to verify that the line that configures anvil is not commented out:

=== == = = = == == == = = ====
service type private unpriv chroot wakeup maxproc command + args

(yes) (yes) (yes) (never) (100)

=== == = = = == == == = = S
anvil unix - - n - 1 anvil

The anvil daemon is started on demand, and it writes all data it gathers
to the mail log at fixed intervals. These log messages appear as follows:

Dec 20 01:19:16 mail postfix/anvil[8991]: statistics: max connection count 4
for (10.0.0.1:smtp:216.129.165.190) at Dec 20 01:18:35

Dec 20 01:29:16 mail postfix/anvil[8991]: statistics: max connection rate 9/
60s for (10.0.0.1:smtp:62.243.72.19) at Dec 20 01:22:11

Dec 20 01:29:16 mail postfix/anvil[8991]: statistics: max connection count 2
for (10.0.0.1:smtp:62.243.72.19) at Dec 20 01:22:09

Dec 20 01:39:16 mail postfix/anvil[8911]: statistics: max connection rate 3/
60s for (10.0.0.1:smtp:146.82.138.6) at Dec 20 01:37:04

Dec 20 01:49:16 mail postfix/anvil[8991]: statistics: max connection rate 2/
60s for (10.0.0.1:smtp:218.18.32.248) at Dec 20 01:46:35

Dec 20 01:49:16 mail postfix/anvil[8991]: statistics: max connection count 2
for (10.0.0.1:smtp:218.18.32.248) at Dec 20 01:46:35

Dec 20 01:59:16 mail postfix/anvil[8991]: statistics: max connection rate 3/
60s for (10.0.0.1:smtp:146.82.138.6) at Dec 20 01:50:58

Dec 20 01:59:16 mail postfix/anvil[8991]: statistics: max connection count 2
for (10.0.0.1:smtp:171.67.16.117) at Dec 20 01:55:33

Dec 20 02:09:16 mail postfix/anvil[8991]: statistics: max connection rate 2/
60s for (10.0.0.1:smtp:216.136.204.119) at Dec 20 02:03:38

Dec 20 02:19:16 mail postfix/anvil[8991]: statistics: max connection rate 2/
60s for (10.0.0.1:smtp:63.161.42.51) at Dec 20 02:09:29

Dec 20 02:19:16 mail postfix/anvil[8991]: statistics: max connection count 2
for (10.0.0.1:smtp:130.149.17.13) at Dec 20 02:11:52

Changing the anvil Log Interval

By default, anvil writes statistic reports to the mail log every ten minutes,

or when the daemon terminates (for example, if you reload Postfix, or if the
daemon terminates itself after max_idle seconds). If you need to increase or
decrease this interval, set the client_connection_status_update_time parameter
in main.cf:

client_connection_status_update_time = 10m

Your changes take effect as soon as you reload Postfix.

Remote Client Concurrency and Request Rate Limiting 381

382

NOTE

This log interval is a diagnostic tool that is independent of the anvil daemon’s internal
operation. Decreasing the interval does not cause anvil to collect statistics more often;
the Postfix programs access all curvent anvil data through interprocess communica-
tion. They do not look at the log files.

Limiting Client-Connection Frequency

NOTE

Chapter 21

By default, Postfix does not impose a limit on the number of successive times
that a client may connect. Therefore, if you do not change anything, a client
can connect and disconnect as often as it likes, making smtpd waste precious
resources performing DNS lookups, doing TLS handshakes, and so on.

To impose a client-connection frequency limit, Postfix must count the
number of connections in a specific period of time. This interval is known
as the rate time unit, and you can define it with the client_connection_rate_
time_unit parameter. The default is one minute (60 seconds):

client_connection_rate_time_unit = 60s

Now you can set a limit on the number of connections permitted from
a single client during this rate time unit with the smtpd_client_connection_
rate_limit parameter. For example, the following setting, in conjunction
with the preceding default rate time unit, allows one client to connect a
maximum of 30 times in 60 seconds:

smtpd_client_connection_rate_limit = 30

Testing Client-Connection Rate Limits

The easiest way to test rate limits is to apply the settings and then observe the
logs for a few days. Incorrect settings cannot cause you to lose mail or harm
your system, because Postfix refuses rate-limited clients with temporary error
codes. A properly configured client will retry delivery; for example, Postfix
retries for five days by default (see the maximal_queue_lifetime parameter).

If you want an immediate test, try the following:

1. Generate lots of mail traffic with a program such as smtp-source.

2. Send mail from an IP address that is not exempt from the rate limits.
During testing, you can also reduce the client_connection_status_update_time
parameter to one minule to gather connection statistics more frequently.

To carry out the test, use the following settings in your master.cf file and

reload your server configuration:

smtpd_client_event_limit_exceptions= @
client_connection _rate time unit = 60s

NOTE

smtpd_client_connection_rate_limit = 1 @
client_connection status update time = im ©

O Setting this parameter to empty specifies that all clients are subject to
rate limiting; use this setting only for testing.

® This limit is set gratuitously low for testing purposes. You really don’t
want an email server that allows only one connection from a client per
minute.

© This setting generates statistic logs every minute, so that you don’t
have to wait ten minutes for a status report. Again, use this only for testing.

Now you need to generate enough traffic to activate the rate limiter. Use
the smtp-source command on your Postfix server like this:

$ smtp-source -m 10 -f sender@example.com -t recipient@example.com 127.0.0.1:25

If smtp-source isn’t part of your distribution, grab it from the Postfix source files.

The preceding command sends ten test messages from sender@example. com
to recipient@example.comvia the SMTP server on 127.0.0.1 (localhost). Because
you set the per-client limit to one connection every 60 seconds, this com-
mand easily exceeds that limit.

You will see this error output from smtp-source:

smtp-source: fatal: bad startup: 450 Too many connections from 127.0.0.1
Furthermore, your log will show this:

Jan 9 09:04:16 mail postfix/smtpd[26530]: connect from localhost[127.0.0.1]
Jan 9 09:04:16 mail postfix/smtpd[26530]: 12AA515C06F:
client=1localhost[127.0.0.1]
Jan 9 09:04:16 mail postfix/smtpd[26530]: disconnect from localhost[127.0.0.1]
Jan 9 09:04:16 mail postfix/smtpd[26530]: connect from localhost[127.0.0.1]
Jan 9 09:04:17 mail postfix/smtpd[26530]: warning: Too frequent connections:
2 from 127.0.0.1 for service localhost:smtp
Jan 9 09:04:17 mail postfix/smtpd[26530]: disconnect from localhost[127.0.0.1]

Here is another example, where the smtpd_client_connection_rate_limit
parameter was set to 30. Postfix refused all clients exceeding that maximum
allowed frequency with a 450 status code, disconnected, and produced a
warning with the client name and address and daemon name:

Dec 20 02:39:03 mail postfix/smtpd[18431]: warning: Too frequent connections:
31 from 81.199.6.44 for service 10.0.0.1:smtp @

Dec 20 02:39:04 mail postfix/smtpd[17840]: warning: Too frequent connections:
32 from 81.199.6.44 for service 10.0.0.1:smtp

Dec 20 02:39:04 mail postfix/smtpd[17878]: warning: Too frequent connections:
33 from 81.199.6.44 for service 10.0.0.1:smtp

Dec 20 02:39:15 mail postfix/smtpd[18440]: warning: Too frequent connections:
65 from 81.199.6.44 for service 10.0.0.1:smtp

Remote Client Concurrency and Request Rate Limiting 383

384

Dec 20 02:39:15 mail postfix/smtpd[18432]: warning: Too frequent connections:
66 from 81.199.6.44 for service 10.0.0.1:smtp

Dec 20 02:39:16 mail postfix/anvil[8991]: statistics: max connection rate 72/
60s for (10.0.0.1:smtp:81.199.6.44) at Dec 20 02:39:15 @

® The client running on 81.199.6.44 exceeded the 30-connections-per-
minute limit, causing the Too frequent connections warning in the log.

® This particular client (81.199.6.44) set the connection rate record with
72 connections in 60 seconds, as anvil reports here.

Restricting Simultaneous Client Connections

CAUTION

Chapter 21

By default, the number of simultaneous connections per client is limited to
half the default process limit. As a result, two clients can occupy all of the
smtpd processes that Postfix is permitted to run. The smtpd _client connection_
count_limit parameter controls the number of simultaneous connections per
client. For example, the following configuration setting in main.cf limits a
client to 25 concurrent connections:

smtpd_client_connection_count_limit = 25

The process limit for smtpd or the default_process_limit parameter should be consider-
ably larger than smtpd_client_connection_count_limit; otherwise one client might hog
all available smtpd processes.

Testing Simultaneous Client-Connection Limits

As was the case with connection frequency limits, the easiest way to test
concurrent session limits is to apply the settings and observe the logs for a
few days. However, if you’d like an immediate test, generate lots of simul-
taneous connections with the smtp-source command from an IP address that
is not exempt from rate limits.

During testing, you should probably reduce client_connection_status_
update_time to one minute.

To carry out the test, set the rate-limiting parameters in your master.cf
file as follows, and reload the configuration:

smtpd_client connection limit exceptions = @
client_connection_rate_time_unit = 60s
smtpd_client_connection_count_limit = 1 @
client_connection_status_update_time = im ©

O All clients are being subjected to rate limiting; do this only for testing.

@® This limit is far too low; use this only for testing. You don’t want to use
an email server that only allows one connection from one client every 60
seconds.

© Produce log reports every minute so that you don’t have to wait ten
minutes for a status report; use this only for testing.

You can open several simultaneous connections with the smtp-source
command. Try running this on your Postfix server:

$ smtp-source -s

10 -m 10 -f sender@example.com -t recipient@example.com 127.0.0.1:25

The -m 10 option says to send ten test messages, and the -s 10 option
specifies ten simultaneous SMTP sessions. With a limit of one connection per
client, you should easily trip the limit and generate this error message from
smtp-source:

smtp-source: fatal: bad startup: 450 Too many connections from 127.0.0.1
The log should show something like this:

Jan 9 09:14:15 mail postfix/smtpd[28438]: warning: Too many connections:

2 from 127.0.0.1 for service localhost:smtp
Jan 9 09:14:15 mail postfix/smtpd[28438]: disconnect from localhost[127.0.0.1]
Jan 9 09:14:15 mail postfix/smtpd[28437]: warning: Too many connections:

2 from 127.0.0.1 for service localhost:smtp
Jan 9 09:14:15 mail postfix/smtpd[28437]: disconnect from localhost[127.0.0.1]
Jan 9 09:14:15 mail postfix/smtpd[28439]: warning: Too many connections:

3 from 127.0.0.1 for service localhost:smtp
Jan 9 09:14:15 mail postfix/smtpd[28439]: disconnect from localhost[127.0.0.1]
Jan 9 09:14:15 mail postfix/smtpd[28440]: warning: Too many connections:

4 from 127.0.0.1 for service localhost:smtp
Jan 9 09:14:15 mail postfix/smtpd[28440]: disconnect from localhost[127.0.0.1]

For the log messages that follow, smtpd_client_connection_count_limit was
set to 25. As was the case with frequency limits, Postfix sends a 450 status code
to a client making too many simultaneous connections, disconnects, and logs
a warning with the client name and address:

Dec 3 09:12:53 mail postfix/smtpd[19883]: warning: Too many connections:
26 from 213.165.64.165 for service 10.0.0.1:smtp @

Dec 3 09:12:53 mail postfix/smtpd[19884]: warning: Too many connections:
27 from 213.165.64.165 for service 10.0.0.1:smtp

Dec 3 09:13:15 mail postfix/smtpd[19894]: warning: Too many connections:
35 from 213.165.64.165 for service 10.0.0.1:smtp

Dec 3 09:16:47 mail postfix/anvil[7958]: statistics: max connection count
37 for (10.0.0.1:smtp:213.165.64.165) at Dec 3 09:12:3 @

© 213.165.64.165 exceeds the limit of 25 connections, causing the Too

many connections warning in the log.
® 213.165.64.165 set the record with 37 connections targeted to smtpd.

Remote Client Concurrency and Request Rate Limiting 385

386

Exempting Clients from Limits

Chapter 21

You can use the smtpd_client_connection_limit_exceptions parameter to
exclude authorized hosts and networks from the client limitations in this
chapter. The notation includes network/netmask expressions, hostnames,
and domain names.

By default, Postfix grants client-limit exemptions to all hosts in mynetworks.
If you want to use a more restrictive setting, you can take a look at sample-
smtpd.cf, smtpd(8), and anvil(8).

Here is an example that allows hosts in $mynetworks, the subnet
10.45.207.0/24, and the domain example.com to connect as much and as
often as they please:

smtpd_client_connection_limit_exceptions =
$mynetworks,
10.45.207.0/24,
.example.com

PERFORMANCE TUNING

Postfix is fast out of the box, but like other

packages, you can usually tune it to work

even faster. Furthermore, there are situ-

ations where Postfix may not perform as well
as you expected, whether because of hardware

or software limitations on the server system or other

adverse conditions, such as a big influx of spam or

undeliverable mail.

This chapter shows you how to find and analyze the most common
performance problems.

Basic Enhancements

We will first look at a few elementary tweaks that still may not be terribly
obvious. Think of the suggestions here as a checklist for solving or avoiding
simple problems. Above all, keep in mind that many performance problems
are actually caused by a flawed setup, such as a bad /etc/resolv.conf file. The
following points appear in no particular order; they're all of equal importance.

388

Chapter 22

Speeding Up DNS Lookups

Postfix does a lot of DNS queries because SMTP requires lookups for MX
and A records. Furthermore, many of the Postfix restrictions use DNS
lookups to verify a client’s hostname or to perform a blacklist lookup.
Therefore, it’s critical that your server be able to look up DNS records
quickly, especially if you have a high amount of traffic.

Testing DNS Lookups

The most common problem with DNS name resolution is that queries take
too long. You can use the dig command to perform a DNS lookup and
display detailed information about the query’s execution:

$ dig www.example.com

5 <<>> DiG 9.2.3rc4 <<>> www.example.com

;; global options: printcmd

;3 Got answer:

;3 ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 48136

;3 flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 0
;3 QUESTION SECTION:

;wWww.example.com. IN A
53 ANSWER SECTION:
www . example. com. 172800 1IN A 192.0.34.166

;35 Query time: 174 msec

53 SERVER: 127.0.0.1#53(127.0.0.1)
53 WHEN: Mon Oct 6 09:40:52 2003
53 MSG SIZE rcvd: 49

In this example, the query took 174 milliseconds. Now, let’s run the
query again:

$ dig www.example.com

5 <<>> DiG 9.2.3rc4 <<>> www.example.com

;5 global options: printemd

;5 Got answer:

53 ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 6398

;; Tlags: gr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 0
;3 QUESTION SECTION:

sWww . example. com. IN A
;3 ANSWER SECTION:
www.example.com. 172765 1IN A 192.0.34.166

;3 Ouery time: 18 msec
;3 SERVER: 127.0.0.1#53(127.0.0.1)
35 WHEN: Mon Oct 6 09:41:27 2003
33 MSG SIZE rcvd: 49

This subsequent query for the same host took only 18 milliseconds,
approximately ten times faster. The reason that this second query was so
quick is that this particular machine is accessing a caching DNS server.

If the lookups take significantly longer (or worse, time out), then you're
having DNS problems. There are several possible reasons:

resolv.conf settings

If you run Postfix in a chroot jail, you may have changed /etc/resolv.conf
but forgotten to copy the updated file to the chroot jail (usually /var/
spool/postfix/etc/resolv.conf).

The nameservers listed in /etc/resolv.conf could be slow or not
servicing requests at all. Verify that the specified servers answer your
DNS queries in a timely manner for each server line in /etc/resolv.conf
using the dig command.

Network problems

Your uplink to the Internet might not be working as it should, or it could

be saturated. If this is the case, you should consider getting more band-

width or using traffic shaping to give priority to nameserver queries.
Firewall settings

A firewall can block nameserver packets moving to and from your mail
Server.

Malfunctioning caching nameserver
If you're running a caching nameserver locally, make sure that it’s actu-
ally working.

Improving DNS Lookup Performance

If your /etc/resolv.conf settings, your network, and your firewall all seem
fine, yet you still need to speed up your DNS queries, you should consider
running a local caching server, such as djbdns dnscache or an instance of
BIND on your server or network. The cache significantly speeds up the
lookup process and decreases network utilization at the same time because
recurring lookups don’t result in outgoing packets.

Confirming That Your Server Is Not Listed as an Open Relay

If you’re running an open relay, you can expect that many mail servers will
refuse any mail from your servers. In addition, spammers will use your system
to send their mail, increasing the load on your system, because your system is
handling your users as well as your abusers.

Your system will typically end up on a blacklist after the open relay has
been confirmed. It can be a royal pain to get off a blacklist, and it may take
days or even weeks. Therefore, it’s essential that you make sure that your
system is not an open relay or open proxy. Look up your IP address on
http://openrbl.org. If you're listed, close the open relay immediately. Allow
users to relay in only one of these situations:

¢ The user’s client is listed in the mynetworks parameter.
¢ The user’s client successfully performed SMTP authentication.
¢ The user’s client successfully authenticated itself using a TLS client
certificate.
Performance Tuning 389

390

Chapter 22

Refusing Messages to Nonexistent Users

It's a good idea to refuse messages for recipients that don’t exist in your
system. If Postfix were to accept such mail, it would have to send a non-
delivery notification to the sender address. In the case of spam or viruses,
that sender address is almost certainly not the true origin of the mail.
The resulting MAILER-DAEMON notifications will clog the queue for
several days.

This shouldn’t be too much of a problem by itself, but if you accept mail
for users that do not exist on your system, your system can store the messages
in a place that can eventually fill up, or if you run a relaying system (see
Chapter 13), the ultimate target of the message will eventually have to send a
bounce back to the envelope sender of the message (to the Return-Path in the
message header). Furthermore, this bounce may turn out to be undeliver-
able itself, because the domain used as the sender domain probably won’t
accept anything.

In any case, these bounces will clutter your queue or go to the mailbox
specified by double_bounce_recipient (which may be your postmaster account).
If you see something like this in your mail queue, you may be having this
problem:

$ mailq
-Queue ID- --Size-- ---- Arrival Time---- -Sender/Recipient-------
63BE9CF331 10658 Mon Jan 12 14:38:30 MAILER-DAEMON
(connect to mail3.quickspress.com[63.89.113.198]: Connection timed out)
platinum@quickspress.com
1C932CF30E 3753 Sat Jan 10 16:16:38 MAILER-DAEMON
(connect to mx.unrealdeals.biz[69.5.69.110]: Connection refused)
EntrepreneurCareers@unrealdeals.biz
98EC3CF3F9 5505 Sat Jan 10 20:25:06 MAILER-DAEMON
(connect to fhweb8.ifollowup.com[216.171.193.38]: Connection refused)
root@fhweb8.ifollowup.com
50B14CF31E 5196 Mon Jan 12 11:35:11 MAILER-DAEMON
(connect to mail.refilladvice.net[218.15.192.166]: Connection timed out)
clintoncopeland@refilladvice.net
F4009CF39D 5452 Sun Jan 11 01:58:27 MAILER-DAEMON
(connect to fhweb9.ifollowup.com[216.171.193.39]: Connection refused)
root@fhwebg. ifollowup.com
-- 30 Kbytes in 5 Requests.

Here you can see five messages that are being bounced back to the
original senders (notice that the sender is MAILER_DAEMON), but in each
case, the recipient’s mail server is unreachable.

NOTE

To refuse messages for nonexistent recipients on your system, set the
local_recipient_maps and relay_recipient_maps parameters (the latter if you're
running a gateway that just relays mail to internal mail servers) to maps
containing valid recipients.

If bounces really get out of hand, you can also employ RHSBL-style
blacklists (see Chapter 8) to reject mail from servers that don’t accept
bounces at all (because all bounces that need to be sent back to these servers
remain in your mail queue for several days). There’s an RHSBL-style blacklist
at RFC-Ignorant.Org (http://rfc-ignorant.org) that you can use like this:

check_rhsbl sender dsn.rfc-ignorant.org

Blocking Messages from Blacklisted Networks

There are many different kinds of blocklists and DNS blacklists available that
list individual IP addresses, whole IP ranges, and even sender domains for all
sorts of reasons. There’s at least one list for every kind of perceived
misbehavior.

The most useful of these list open relays and open proxies, because they
can be tested automatically in an objective manner. Here are just a few of the
blacklists:

e relays.ordb.org

e list.dsbl.org

e cbl.abuseat.org

e dul.dnsbl.sorbs.net

Few things change faster than blacklists. Today’s hot blacklist may be out of service
tomorrow.

These blacklists have low probabilities of false positives because they
provide clear criteria for listing addresses. Running an open proxy or open
relay is generally considered wrong, so using these lists puts social pressure
on the administrators of the misconfigured systems. (Of course, they may be
clueless or just not care.)

Refusing Messages from Unknown Sender Domains

If possible, do not accept messages containing an envelope sender from an
invalid domain. If there’s a problem during delivery, the error report always
goes back to the envelope sender, and if this address contains a nonexistent
domain, there’s nowhere to send the error report.

Postfix tries to send the error report, finds it to be undeliverable, and
then (since it cannot be bounced, because the envelope sender is empty)
sends it to 2bounce_notice recipient.

Performance Tuning 3N

392

You can avoid this by adding reject_unknown_sender_domain to smtpd_
sender_restrictions or smtpd_recipient_restrictions, as discussed at length
in Chapter 8.

Reducing the Retransmission Attempt Frequency

If you have a lot of mail that your server can’t deliver on the first few
attempts, consider using a fallback relay (with the fallback_relay parameter)
or increasing the backoff time (maximal_backoff_time) to reduce the frequency
with which deferred mail reenters the active queue.

Without a fallback relay, Postfix spends precious time trying to deliver
mail to sites that are down or unreachable. Each of these delivery attempts
ties up one smtp process that has to wait until the timeout is reached. A fall-
back relay can do the dirty work of retrying transmission for messages that
can’t be delivered on the first try. This means your regular mail server can
operate with the default timeouts or even with reduced timeout values,
speeding up delivery.

On the other hand, increasing the maximal_backoff time parameter bumps
up the maximum time that the server ignores a certain destination after a
delivery problem occurs. Therefore, Postfix makes fewer attempts to contact
problematic servers.

Finding Bottlenecks

Chapter 22

This section describes how you can identify bottlenecks in your system.
Before reading through this material, you may want to review Chapter 5 to
get an idea of which daemons do what.

Because all of the Postfix daemons have to access one or more queues in
order to do their work, knowing the status of queues can come in really
handy. Here are a few of the queues that you need to worry about:

e incoming
e deferred
e active

e maildrop

When a message enters the system, it becomes a queue file that Postfix
moves between the queues. If one of the queues has a lot of messages in it,
you may have an underlying performance problem. To get a handle on the
different queues, Victor Duchovni wrote a nifty utility called gshape to show
the distribution of messages among the previously mentioned queues. This
program reads the queue files directly, bypassing the mailg command, and
therefore, only root and the postfix user can run it. You can download it at
http://sbserv.stahl.bau.tu-bs.de/~hildeb/postfix/scripts. Recent Postfix
versions have this script included in the source tarball.

gshape displays a tabular view of the Postfix queue contents. The rows of
the table show the number of messages bound for a particular destination, as
well as the overall total. The columns show the age of the messages. For
example, take a look at the following output for the hold queue (parameter
hold), where you can see the top ten lines of the (mostly forged) sender
domain distribution (parameter -s) for captured spam:

qshape -s hold

—
=
o
]
=]
B
(=]

80 160 320 320+
TOTAL 2 2 0
hotmail.de
alb-24-194-161-132.nycap.Ir.Com
freeenet.de

x4u2.desy.de

csi.com

da.ru

freeuk. com
mx5.outrageouscourtiers.com
online.de

molgen.mpg.de

charite.de

[y
1]

N T T T ¥
OO0 000000 OO0 OOoOwWm
oo o0 00000 OO OoOO
oo oo ococoooo oo
oo oCOOCO0CO0O0O0COoO0OOO
O 0O 0O R, OO O OR O
OO0 O0OQ0CORrR OR OO
oo o000 OoOo o OO o
O Bk OFR O R ORr OONG

The T column contains the total count of messages for each domain.
The other columns show the counts for messages older than a certain age
(measured in minutes) but not older than the age in the column to the right.
In this case, there are two messages that purport to be from hotmail.de. Both
are older than 320 minutes.

By default, gshape shows statistics for both the incoming and active queues
because these are directly related to the overall performance. You can specify
a different set of queues on the command line, as in these examples:

$ qshape deferred
$ gshape incoming active deferred

Now that you can track down busy queues, you can do something about
them. The following sections explain how to clear up bottlenecks in each
type of queue. We'll also cover the formulas you can use to calculate whether
your system can handle a given amount of mail, and how and when to use
fallback relays.

Incoming Queve Bottlenecks

As described in the previous section, “Finding Bottlenecks,” the Postfix
cleanup service stores all new mail in the incoming queue. New files get a
permissions mode of 0600 until they are complete and are ready for further
processing, when they get an access mode of 0700. Under normal conditions,

Performance TL,'llng 393

394

NOTE

C‘I{_:p'.[:‘.f 22

the incoming queue is nearly empty and contains only files with a mode of
0600, because the queue manager should be able to import new messages
into the active queue as soon as the cleanup service is done with them.

However, the incoming queue will grow when the message input rate
spikes above the rate at which the queue manager can move messages into
the active queue. At that stage, the only thing slowing down the queue
manager is the trivial-rewrite service. If the queue manager is having
trouble keeping up, you may be using slow lookup services—such as MySQL
and LDAP—for transport lookups, or you may need to speed up the servers
that provide the lookup services.

If you're using high or variable latency IPC (interprocess communication) maps, such
as LDAP and SQL, Postfix needs more time to receive mail. Thus, Postfix will be run-
ning more smtpd (and cleanup) processes, and will sooner hit the smtpd process limit.
With these slow table lookups, a delivery agent (local, pipe, virtual, Imtp) will proba-
bly finish in less time than smtpd needs to recetve mail, so Postfix will run fewer delivery
agents than expected.

One possible remedy with LDAP is to try to avoid binding to your LDAP server. Set
bind = no in your LDAP query configuration files. This makes Postfix bind to the
LDAP server anonymously, thus reducing the overhead for authentication and
password verification.

In comparison to file-based maps, such as hash, btree, dbom, and cdb, IPC maps
Just takes longer to look up information, and therefore, the Postfix daemons can do
nothing while waiting for the lookup to go through. If the lookup were faster, Postfix
would be faster.

As discussed elsewhere, these maps do have their advantages, and that can
outweigh the drawbacks. One of the most significant is that Postfix doesn’t need to kill
and restart a process to reopen a map when the contents have changed. You may want
to try some database tuning instead.

If the bottleneck lies in the incoming queue, then the influx of messages is
taking precedence over sending messages out. A way to prevent the inflow of
mail from starving the outflow is to fool around with the in_flow_delay param-
eter to limit the input rate when the queue manager starts to fall behind. The
cleanup service pauses for the number of seconds specified by in_flow_delay
before creating a new queue file if it cannot obtain a token from the queue
manager,

The reason that this works is that the number of cleanup processes is
usually limited by the SMTP server (smtpd) concurrency. The input rate can
exceed the output rate by at most the SMTP connection count divided by
in_flow_delay messages per second. To find out the current number of
incoming SMTP connections, use ps and grep as follows:

ps auxww| grep smtpd | grep -v grep | wc --lines
22

There are 22 smtpd processes running on this system. This command
counts all smtpd processes, so if you have multiple smtpd configurations
(for example, if you're using a content filter that reinjects mail back into
the queue with SMTP), then you need to use a more specific grep pattern
to find the number of smtpd daemons accepting mail from the outside
network:

ps auxww| grep smtpd | grep -v grep | grep -v localhost | wc --lines
9

With a default process limit of 100 and an in_flow_delay setting of one
second, the coupling is strong enough to limit a single runaway injector to
one message per second. However, it is not strong enough to deflect an
excessive input rate from many sources at the same time.

If your server is under attack from multiple sources, your best option is
to make the SMTP sessions as short as possible (a smtpd_error_sleep_time of
zero, and a low smtpd_hard_error_limit, which will make Postfix hang up on
connections that exceed this limit). Do this only if the incoming queue is
growing even when the active queue isn’t full and the trivial-rewrite service
is using a fast transport lookup mechanism.

If you try these remedies and you're still having problems with a
congested incoming queue but no active queue congestion, the problem is
most likely your I/0O subsystem: Mail is coming in and is written to disk, but
the smtpd and qmgr processes need to access the same resource (the on-disk
queue), and you're bound by the speed of the I/O subsystem.

In this case, it’s time to either add a /ot of memory to your mail server
(in order to increase the disk caching pool for the operating system), or
move the queue directory to one of these:

¢ Astriping RAID system
¢ A battery-backed RAM disk (this is for the daring people out there,
because you'll lose mail in the case of a system crash)

Maildrop Queve Bottlenecks

Messages that are submitted via the Postfix sendmail command but are
not yet sent to the main Postfix queues by the pickup service sit around
in the maildrop queue—you can send messages using the sendmail
command, and they’ll be added to the maildrop queue even when the
Postfix system isn’t running. The single-threaded pickup service scans the
maildrop queue directory periodically or when notified of new message
arrival by postdrop.

Performance TL,‘llng 395

396

Chapter 22

The rate at which the pickup service can inject messages into the primary
queues is largely determined by disk access times, because it must commit
the message to stable storage before finishing. The same is true of the
postdrop program, which writes messages to the maildrop directory.

Because the pickup service is single-threaded, it can deliver only one
message at a time, at an overall rate not exceeding the disk I/O latency (and
CPU usage, if applicable) incurred by the cleanup service, because every mail
that pickup processes needs to go through cleanup. As you remember, cleanup
performs header_checks, body checks, and so on, which can be very CPU
intensive. cleanup then writes the message into a queuefile—and this is
bounced by the disk I/O latency. If you have congestion in the maildrop
queue, you probably have one of these two problems:

e Excessive local message submission rate

¢ Excessive CPU consumption in the cleanup service due to excessive
body checks

However, keep in mind that when the active queue is full, the cleanup
service attempts to slow down message injection by pausing for each message,
according to the in_flow_delay parameter. In this case, congestion in the
maildrop queue may be a result of further downstream congestion.

Don’t try to deliver a lot of mail via the pickup service. If you have a high-
volume site, you need to avoid using content filters that reinject scanned
mail with sendmail and postdrop. Instead, use an SMTP connection for
injection. There are plenty of programs that can do it for you, including
mini_sendmail (http://www.acme.com/software/mini_sendmail).

If you’ve got a lot of locally submitted mail, you might have a forwarding
loop or a runaway notification program. In addition, the postsuper -r com-
mand can place selected messages into the maildrop queue for reprocessing.
Although this is useful for resetting stale content_filter settings, requeuing a
large number of messages with postsuper -r can cause a spike in the size of
the maildrop queue.

Deferred Queve Bottlenecks

When Postfix can’t deliver a message to some of its recipients because of a
temporary failure, it places the message in the deferred queue in hopes of
delivering it later. The queue manager scans the deferred queue periodically
at an interval specified by the queue_run_delay parameter. As mentioned in
Chapter 5, the queue manager chooses messages from both the incoming and
deferred queues in a round-robin fashion to prevent deferred mail from
dominating the active queue.

Each deferred queue scan reinjects a fraction of the deferred queue
back into the active queue for retrying, because each message in the
deferred queue is assigned a cool-off time when it is deferred. Postfix

CAUTION

does this by time-warping the modification times of the queue file into the
future. A queue file is not eligible for retry if its modification time hasn’t
arrived.

The cool-off time is at least the value of minimal_backoff_time and at
most maximal_backoff_time. Postfix sets the next retry time by doubling the
message’s age in the queue and adjusting the result to make sure that the
time lies between these limits. The end result is that Postfix retries young
messages more frequently.

If your high-volume site has a large deferred queue, you may want to
tweak the queue_run_delay, minimal_backoff_time, and maximal_backoff time
parameters to provide short delays upon the first failure and perhaps causing
longer delays after multiple failures. This will reduce the retransmission rate
of old messages, reducing the quantity of previously deferred mail in the
active queue.

One common reason for large deferved queues is a failure to validate recipients at the
SMTP input stage. See the “Mail to Unknown Recipients” section in Chapter 8 for the
reasons why you must do recipient validation.

If a server with lots of deferred mail goes down for a while, it’s possible
for the entire deferred queue to reach the retry time simultaneously when
the server comes back up. This can lead to a very busy active queue. Com-
plicating this, the phenomenon will repeat itself approximately every
maximal_backoff_time seconds if most of the messages are again deferred.

Ideally, to fix this problem, Postfix will include a random offset in
addition to the standard retry time to reduce the chances of the entire
deferred queue being repeatedly flushed at the same time.

Active Queve Bottlenecks

As described in Chapter 5, the queue manager is a delivery agent scheduler
that tries to ensure fast and fair message delivery to all destinations within
designated resource limits. Congestion in the active queue occurs when
one or more destinations accept messages at a slower pace than the corre-
sponding message input rate.

If the destination is down for some time, the queue manager will mark
it as dead and immediately defer all mail for the destination without even
bothering to assign it to a delivery agent. Therefore, these messages leave
the active queue quickly, but they end up in the deferred queue. If the desti-
nation is just plain slow, or if there is a problem causing an excessive input
rate, the active queue grows and becomes saturated by messages destined
for the slow destination. There are only two ways to reduce the congestion:

e Reduce the input rate.

¢ Increase throughput.

Performance TL,‘llng 39?

398

NOTE

CAUTION

C‘I{_:p'.[:‘.f 22

Increasing throughput requires either increasing the concurrency (the
number of simultaneous Postfix smtp processes that you run) or reducing the
latency of deliveries (by getting on a better network, changing the map type,
fixing a DNS slowdown, and the like). To increase concurrency, you can
increase the number of the default_process_limit parameter in your main.cf
file. However, if you want to do it on a per-destination basis, find the slow
transport (such as a transport for content_filter) or destination (such as
certain big freemail sites) that’s dominating the active queue (gshape is great
for this). After you zero in on the culprit, define a dedicated transport name
and set name_destination_concurrency limit. See “Configuring an Alternative
Transport” in this chapter for more detailed information on how to do this.

Above all, keep in mind that the maximum number of processes used for
any service is limited in master.cf and main.cf.

Remember that your operating system must be able to handle the increased number of
processes and open files. See “Running hundreds of processes” in the Postfix FAQ at
http://www.postfix.org/faq. html.

The latency can sometimes be lowered by speeding up DNS (see the
section “Improving DNS Lookup Performance” in this chapter) and map
lookups as mentioned in Chapter 5, in the section “Databases (MySQL,
PostgreSQL, LDAP).” In addition, decreasing timeouts for busy sites with lots
of MX hosts can help. However, none of this will help if the receiving system
cannot keep up (for example, when you're sending to slow sites like certain
freemail sites).

Another cause of congestion in the active queue is unwarranted flushing
of the entire deferred queue. The deferred queue holds messages that prob-
ably won’t be delivered, at least not in any random try. Furthermore, it’s also
likely that the failure leading to the deferral will take a long time, because
Postfix will have to wait for a timeout.

The “flush the queue” instinct of some administrators for a large deferred queue will
probably be counterproductive and make the problem worse. Don't flush the deferred
queue unless you expect that most of the messages in there will actually make it to their
destinations on the next try! So analyze first, fix the problem, then flush the queue!

Finally, avoid reloading or restarting Postfix when possible. When the
queue manager restarts, there may be messages in the active queue directory,
but the true active queue (in memory) is empty. In order to recover the
in-memory state, the queue manager moves all of the messages in the
active queue back into the incoming queue and relies on the normal
incoming queue scan to refill the active queue. The process of moving all
the messages back and forth, redoing the transport table lookups, and
re-importing the messages to memory is expensive.

CAUTION

NOTE

The postfix reload command restarts the qgueue manager, so you should avoid fooling
around with configuration files that require the postfix reload command for their
changes to take effect on busy production servers.

Asynchronous Bounce Queve Congestion Inequality

If the deferred queue is full of undeliverable bounces, Postfix is not to blame
for the queue congestion. The congestion is a consequence of high average
latency when you have a large backlog of undeliverable mail, because the
smtp daemons trying to send the mail just time out. Victor Duchovni figured
out the congestion inequality that will tell you if you're having problems
like this.

In a queue with lots of bounces that will never be deliverable, the
number of junk messages brought into the active queue by a queue run is
determined by the following formula:

size_of_the_queue x queue_run_delay
maximal_backoff_time

The number of messages processed per queue run is at most:

queue_run_delay x default_process_limit

smtp_connect_timeout x M

When the process limit is exhausted, you can assume that the number
of bounces in the queue is much larger than the process limit. (This is
assuming that the default_process_limit applies to the smtp daemons. If
you raised the entry in the maxproc column of master.cf, use that value in
this equation instead.)

Putting these equations together, you get this result:

size_of_the queue x queue_run_delay . queue_run_delay x default process limit
maximal backoff time - smtp _connect timeout x M

When you multiply both sides by maximal_backoff_time / queue_run_delay,
you get the congestion inequality:

PxB2>20xTxM
The parameters are as follows:

P The smtp transport process limit, obtained by running this command:

postconf default_process_limit
default_process_limit = 100

Check the maxproc value of the smtp line in master.cf to see if there’s an explicit smtp
transport process limil.

Performance TL,‘llng 399

400

NOTE

C‘I{_:p'.[:‘.f 22

B The maximal backoff time, obtained with this command:

postconf maximal_backoff_time
maximal_backoff_time = 4000s

0 The number of bounces in the queue (these bounces presumably go
to at least P / destination_concurrency limit distinct destinations).

T The smtp connection timeout, obtained with this command:

postconf smtp_connect_timeout
smtp_connect_timeout = 30s

M The average MX IP address count. When a domain has more than
one MX record, Postfix has to try each one. You don’t need exact
numbers; just estimate it, and use gshape to estimate the MX count for
the dominant destinations.

By default, each destination can consume at most 20 delivery agents (default_
destination_concurrency limit = 20), so keep adding destinations until you reach
the process limit.

In practice, just estimate a range for M and perhaps cap it by setting smtp_mx_
address_limit (the wpper limit for the number of MX addresses Postfix will try).

If you can’t satisfy this inequality, you're in serious trouble. Do every-
thing you can to lower the value of the right side and raise the left side.

When attempting to lower the value of the right side, keep these points
in mind:

¢ You can’t decrease Q short of deleting the bounces.

¢ You can decrease T by creating a dedicated smtp transport for the recipi-
ent domains of the bounces and lowering its SMTP connection timeout.

¢ You can’t decrease M, because you don’t run the recipient servers and
DNS services.

Here are some suggestions for increasing the value of the left side:

¢ Increasing P is easy. Change the default process limit or edit master.cf
to allow for more smtp processes.

e To increase B, increase the maximal backoff time.

Let’s look at a couple of examples. The first is an installation of
Postfix 1.x on Solaris with 2,000 junk messages in the queue.

In Postfix 1.x, the smtp_connection_timeout setting is the operating system’s
TCP connection timeout. This is about 180 seconds by default on Solaris,
and much longer on Linux. If you're using the default_process_limit default
of 50, you get the following result.

PXB>=Q*T
50 * 4000 >= 2000 * 180
200000 »>= 360000

Here, the inequality does not hold, because the maximal_backoff_time of
4,000 seconds is too small, especially if junk destinations have multiple MX
records.

Now let’s consider the situation where we're using Postfix 1.1.11 (or
later) with 2,000 junk messages in the queue.

For later versions of Postfix (at least 1.1.11-20020717), the connection
timeout is 30 seconds on all platforms, and version 1.1.12-20021212 raised
the default process limit to 100. This yields the following picture:

P*B>=0Q*T
100 * 4000 >= 2000 * 30
400000 >= 60000

This time, the inequality holds true. Furthermore, because the default
backoffis 4,000 seconds, this is well below the critical level, even if the typical
junk destination MX host count is 4. Later Postfix versions can handle a
much larger queue full of junk.

The critical queue size with a default_process_limit setting of 100 is
approximately as follows:

100 * 4000 / 30 = 13000

It might be lower if the MX count is above one. With a process limit of
500, a timeout of 10 seconds, and a maximal_backoff_time of 4 hours, the
critical queue size is this whopping number:

500 * 14400 / 10 = 720000

However, this absurd limit would keep 500 processes busy trying new
messages every 10 seconds—in other words, 50 messages will be leaving and
reentering the deferred queue every second.

Using Fallback Relays

If the primary queue is buckling under the load, it is worth the effort to set
up a second server (or Postfix instance; multi-instance support is slated for
version 2.2) to deal with retries. Therefore, you can tune the primary queue
normally, perhaps with very short timeouts, and any messages that can’t be
delivered on the first attempt can be retried in a fallback queue or on the
fallback relay with the special tuning described earlier in this chapter.

Performance Tuning 401

402

NOTE

To setit up, set the following parameters in the main.cf file for your main
Postfix server:

smtp_connect_timeout = 5s

smtp_mx_address_limit = 3

#fallback_relay = [127.0.0.1]:20025

for multiple instances of Postfix on the same machine
fallback relay = fallback.example.com

for another instance on another host

Then, on the server specified by fallback_relay, set a high critical queue
size. For example, use these parameters to set a limit of 720000:

smtp_connect_timeout = 10s
smtp_mx_address_limit = §
default_process_limit = 500
bounce_queue lifetime = 2d
maximal backoff time = 4h

You may want to increase smtp_connect_timeout by just a little. Some hosts and net-
works really are that slow.

Tuning for Higher Throughput

Chapter 22

If your machine relays a high volume of inbound mail, you can arrange to
have a separate transport forward mail to the inbound domains. For the
purposes of this section, let’s call that transport “relay.” In Postfix 2.x, you
tune it like this:

1. Setrelay_destination_concurrency limit to a high number (for
example, 50).

2. Setup the master.cf entry for relay so that it contains -o smtp_
connect_timeout=$relay_connect_timeout (with no spaces around
the equal sign).

3. Set relay_connect_timeout in main.cf to 5 or 1.

If you're doing content filtering for viruses with an SMTP-based
content_filter (see Chapter 12), make sure the sending transport is
configured with -o disable_dns_lookups=yes. This also helps when you're
sending all mail to a fixed destination, and you don’t have to look up MX
records (for example, when using the relayhost feature).

Configuring an Alternative Transport

If you routinely send high volumes of mail to sites with a lot of mail
exchangers (Hotmail is one notable example), there isn’t much pointin
using the default timeouts. Postfix can probably deliver mail bound for
these domains more quickly if it doesn’t spend so much time on each
broken mail exchanger. This section shows you how to do it.

First, define a new smtp transport called deadbeats in your master.cf file.
To do this, copy the smtp transport line, rename it as deadbeats, and add a
little tweak—a lower smtp_connect_timeout value:

deadbeats unix - - - - - smtp
-0 smtp_connect_timeout=$deadbeats_connect_timeout

The default timeout is 30 seconds, so give set this deadbeats_connect_
timeout a value of five seconds in your main.cf file:

deadbeats_connect_timeout = 5

Now, still inside your main.cf file, instruct Postfix to use this special
transport when sending mail to certain destination domains by setting the
transport_maps parameter:

transport_maps = hash:/etc/postfix/transport

Create the /etc/postfix/transport map like this:

yahoo.com deadbeats:

yahoo.com has 3 MX host, with 9 A records in total
compuserve.com deadbeats:

compuserve.com has 3 MX hosts with 4 A records each
aol.com deadbeats:

aol.com has 4 MX hosts with 18 A records in total
hotmail.com deadbeats:

hotmail.com has 4 MX hosts with 10 A records in total
hotmail.de deadbeats:

hotmail.de has no MX hosts, but 6 A records

To put it in place, run postmap hash:/etc/postfix/transport, and reload
your configuration.

Performance Tuning 403

APPENDICES

The last part of The Book of Postfix is the appendices.
The appendices should help you get started, help you
troubleshoot problems when you experience them,
and give you some references to have at hand while
you are in the midst of configuring your server:

Installing Postfix
Appendix A contains instructions for installing Postfix from source code,
as well as for the Debian and Red Hat Linux distributions.
Troubleshooting Postfix
Having trouble with something when you try to modify a configuration?
Appendix B offers advice for the most frequent gotchas and gives some
general tips for tracking down problems.
CIDR and SMTP Standards Reference
Not everyone can memorize subnets in CIDR notation or SMTP server
response codes. We’ve put them together for you in Appendix C.

INSTALLING POSTFIX

This appendix describes how to build
Postfix from source code, as well as how
to install, prepare, and build packages for

Debian Linux and Red Hat Linux.

The Postfix Source Code

You can find links to the Postfix source code at http://www.postfix.org/
download.html. There are several mirror sites; you should select the one closest
to you for maximum speed.

Before you download the source code, you should know the difference
between experimental (snapshot) and official releases. The official release
does not change, except for bug fixes and portability patches. On the other
hand, snapshot releases contain newer untested features. Code in snapshot
versions that works (and stops changing) eventually becomes part of an
official release.

408

Appendix A

Official Postfix releases are named postfix-a.b.c.tgz, where a, b, and care
as follows:

a Major release number (significant package restructuring)
b Minor release number (new features)
c Patch level (bug fixes)

Snapshot releases have names such as postfix-a.b-yyyymmdd.tgz, where
yyyymmdd is the release date. The mail_release_date configuration parameter
contains the release date for both official and snapshot releases.

When you apply an official patch, the patch level and release date
change. However, a new snapshot has only a different release date, unless the
snapshot includes the same bug fixes as a patch release.

Applying Patches

There are several special features that you can get by applying third-party
patches. You can find a list of Postfix patches at http://www.postfix.org/
addon.html. (If you don’t know how to apply a patch, you probably shouldn’t
be doing this.)

Patches have their own documentation, and because they can signifi-
cantly alter the features and behavior of Postfix, you should carefully read
the instructions.

Building and Installing from Source Code

After you unpack your source code package using tar xfz postfix-a.b.c.tgz,
you will probably customize your build process depending on the features
that you want. The README_FILES directory contains the documentation for
features such as BerkeleyDB, PCRE, MySQL, and SASL. (SMTP-AUTH)
support. Each of the files in this directory gives instructions on how to set
environment variables that alter the build process.

If you're looking for functionality described in this book thatisn’t in the
default configuration, you will most likely find instructions on how to build
Postfix with the feature at the beginning of the chapter that describes the
feature. You can find a complete list of available options in the INSTALL file
that comes with Postfix. The build procedure is always the same:

Set the AUXLIBS environment variable to a set of linker options.

Mo

Set the CCARGS environment variable to a set of compiler and
preprocessor options.

3. Run make makefiles to create the Makefile.

For example, on an ancient HP-UX 10.20 machine, the following is the
command to include BerkeleyDB support, where the library path is /users2/
local/BerkeleyDB-4.0.14/1ib and the include path is /users2/local/BerkeleyDB-
4.0.14/include).

$ AUXLIBS='-L/users2/local/BerkeleyDB-4.0.14/1ib -1db' \
CCARGS="-DHAS_DB -I/users2/local/BerkeleyDB-4.0.14/include’ \
make makefiles

If you want to use CDB instead, apply the patch, install the CDB libraries,
and run this command:

$ AUXLIBS='-L/usr/local/lib -lcdb' \
CCARGS="-DHAS_CDB -I/usr/local/include' \
make makefiles

Then, as a regular user, run make:
$ make

After compiling the package, you need to determine whether you're
installing Postfix for the first time or just installing an upgrade. For a first-
time installation, run this command as root:

make install

This command asks several questions about installation paths.
However, if you are upgrading an existing installation, run these
commands as root instead:

postfix stop
make upgrade
postfix start

For upgrades, the installer extracts the paths of the existing Postfix
installation from the main.cf file and reuses the paths and configuration files.

Starting and Stopping Postfix

As you have probably noticed, you can control Postfix with the postfix
program. It understands the following parameters:

start Starts the Postfix mail system. This also runs the configuration
check described below.

stop Performs an orderly shutdown of the mail system. Running
processes terminate at their earliest convenience.

check Verifies that the Postfix configuration is valid. This command
warns you about bad directory or file ownership and permissions,
and it creates missing directories.

Installing Postfix 409

410

Installing Postfix on Debian Linux

Appendix A

It’s easy to install Postfix on a Debian Linux distribution with the apt-get
command. Although Postfix versions may differ over time, the steps that you
need to perform for installation and integration on Debian Linux are likely
to remain the same for some time.

Installing Postfix

When you initially install your system with Debian, you can choose Postfix as a
package. However, if you don’t manually override the default choice for mail
system, exim will be enabled as the default MTA after the initial boot. You can
see whether Postfix is installed on your system with the dpkg command, which
will print out the installed version if present. Use it like this:

$ dpkg -1 'postfix*'

Desired=Unknown/Install/Remove/Purge/Hold

| Status=Not/Installed/Config-files/Unpacked/Failed-config/Half-installed
|/ Err?=(none)/Hold/Reinst-required/X=both-problems (Status,Err:
uppercase=bad)

||/ Name Version Description

4t-= == = - = == ==

ii postfix 1.1.11.0-3 A high-performance mail
transport agent

un postfix-dev <none> (no description available)
un postfix-doc <none> (no description available)
ii postfix-ldap 1.1.11.0-3 LDAP map support for Postfix
ii postfix-mysql 1.1.11.0-3 MYSQL map support for Postfix
ii postfix-pcre 1.1.11.0-3 PCRE map support for Postfix
un postfix-snap <none> (no description available)
un postfix-snap-dev <none> (no description available)
un postfix-snap-doc <none> (no description available)
un postfix-snap-ldap <none> (no description available)
un postfix-snap-mysql <none> (no description available)
un postfix-snap-pcre <none> (no description available)
un postfix-snap-tls <none> (no description available)
un postfix-tls <none> (no description available)

As you can see, Postfix 1.1.11.0-3 is installed. This system also has support
for ldap, mysql, and pcre maps. Not present are the postfix-tls package (the
package that supports TLS and SASL) or one of the more experimental
snapshot versions (postfix-snap).

If you'd like to try out a Postfix snapshot, run this command:

apt-get install postfix-snap
Reading Package Lists... Done
Building Dependency Tree... Done

The following packages will be REMOVED:
postfix postfix-ldap postfix-mysql postfix-pcre
The following NEW packages will be installed:
postfix-snap
0 packages upgraded, 1 newly installed, 4 to remove and 0 not upgraded.
Need to get 567kB of archives. After unpacking 47.1kB will be freed.
Do you want to continue? [Y/n]

Debian’s package management system removes any conflicting packages,
such as exim and Sendmail before installing the postfix-snap package.

Starting and Stopping Postfix

Debian policy dictates that system daemons ship with startup and shutdown
scripts that go into /etc/init.d. You can start Postfix manually with /etc/
init.d/postfix start and stop it with /etc/init.d/postfix stop.

Installing an Update

Installing updates and upgrades on Debian also goes through the apt-get
command. Here is an example of an update being performed:

apt-get update

Hit http://marillat.free.fr unstable/main Packages
Hit http://marillat.free.fr unstable/main Release
Hit http://smarden.org woody/unofficial Packages
Ign http://smarden.org woody/unofficial Release
Hit http://smarden.org woody/pape Packages

Reading Package Lists... Done

Building Dependency Tree... Done

apt-get upgrade

Reading Package Lists... Done

Building Dependency Tree... Done

0 packages upgraded, 0 newly installed, 0 to remove and 0 not upgraded.

Upgrades leave the current configuration intact unless there are some
changes that are absolutely necessary, such as additions or changes to the
master.cf file and changes to the queue directory.

Building from a Debian Source Package

If you want to build Postfix from a Debian source code package, first retrieve
the source package:

apt-get source postfix

Reading Package Lists... Done
Building Dependency Tree... Done

Installing Postfix 4]]

412

Appendix A

Need to get 2382kB of source archives.

Get:1 http://http.us.debian.org unstable/main postfix 2.1.3-1 (dsc) [832B]
Get:2 http://http.us.debian.org unstable/main postfix 2.1.3-1 (tar) [1972kB]
Get:3 http://http.us.debian.org unstable/main postfix 2.1.3-1 (diff) [409kB]
Fetched 1977kB in 9s (216kB/s)

dpkg-source: extracting postfix in postfix-2.1.3

After you get the source code on your system, you can modify debian/
rules or other files in the debian directory if you want to change the build in
any way. When you're happy with your configuration, you can try to build
Postfix with these commands:

cd postfix-2.1.3
dpkg-buildpackage

Let’s say you try this, but you get some error messages, like these:

dpkg-buildpackage: source package is postfix

dpkg-buildpackage: source version is 2.1.3-1

dpkg-buildpackage: source maintainer is LaMont Jones <lamont@debian.org>
dpkg-buildpackage: host architecture is 1386

dpkg-checkbuilddeps: Unmet build dependencies: libdb4.2-dev 1ibgdbm-dev
libldap2-dev (»>= 2.1) libmysqlclienti10-dev libsasl2-dev postgresql-dev
dpkg-buildpackage: Build dependencies/conflicts unsatisfied; aborting.
dpkg-buildpackage: (Use -d flag to override.)

This means that you’re missing some packages required to build this
particular Postfix source package. Install the packages like this:

apt-get install libdb4.2-dev libgdbm-dev libldap2-dev libmysqlclient10-dev
libsasl2-dev postgresql-dev

Now, try it again. The build process should look like this:

dpkg-buildpackage
dpkg-buildpackage: source package is postfix
dpkg-buildpackage: source version is 2.1.3-1
dpkg-buildpackage: source maintainer is LaMont Jones <lamont@debian.org>
dpkg-buildpackage: host architecture is 1386
debian/rules clean
test -f debian/rules
dh_clean build

dpkg-deb: building package “postfix-doc' in ~../postfix-doc_2.1.3-1_all.deb'.
dpkg-genchanges

dpkg-genchanges: including full source code in upload

dpkg-buildpackage: full upload (original source is included)

So far, so good, but you might want to make sure that the packages are
there:

#cd ..
1s -1 *.deb
-IW-T--Y-- root src 97592 Jul 5 13:11 postfix-dev_2.1.3-1_all.deb

1
-Iw-I--r-- 1 root src 662758 Jul 5 13:11 postfix-doc_2.1.3-1_all.deb
-IW-r--r-- 1 root src 33644 Jul 5 13:11 postfix-ldap_2.1.3-1_i386.deb
-IW-r--r-- 1 root src 29646 Jul 5 13:11 postfix-mysql_2.1.3-1_1386.deb
-IW-T--T-- 1
-IW-T--T-- 1
-IW-T--T-- 1
1

root src 29430 Jul 5 13:11 postfix-pcre_2.1.3-1_i386.deb
root src 29920 Jul 5 13:11 postfix-pgsql_2.1.3-1_i386.deb
root src 140110 Jul 5 13:11 postfix-tls_2.1.3-1_i386.deb
-IW-T--T-- root src 763570 Jul 5 13:11 postfix_2.1.3-1_i386.deb
If everything looks good, install the packages with dpkg -i:

dpkg -i postfix_2.1.3-1_1i386.deb

Installing Postfix on Red Hat Linux

NOTE

You can install Postfix on a Red Hat Linux distribution with the RPM (Red
Hat Package Manager) system. As of Red Hat Linux version 7.3, you can even
install Postfix in parallel with Sendmail. You can choose which MTA to run
by switching between them using the alternatives system.

As with the Debian packages, although Postfix versions vary over time,
the steps required to install Postfix on a Red Hat Linux system are unlikely to
change for a long time.

Getting Postfix for Red Hat Linux

The Red Hat installer does not include Postfix by default when you install
Red Hat Linux, but you can add it at installation time. To check whether
Postfix is already on your system, query the package manager:

rpm -q postfix
postfix-2.1.1-3.fc1

Here, the package manager printed the currently installed version. If
you don’t have Postfix on your system, you'll get something like this instead:

xpm -q postfix
package postfix is not installed

RPM only lists software that was installed using RPM. It does not list applications
that were compiled and installed from source code.

Installing Postfix 4]3

414

Appendix A

Getting Postfix on CD

The most convenient way to get Postfix on your machine is to copy it from
the Red Hat CDs to your hard disk and install the RPM. Insert the disc into
your CD drive, and attach it to your system with a command such as this:

mount /dev/cdrom /mnt/cdrom/
Copy the Postfix RPM to your hard disk with a command like this:

rpm -ivh /mnt/cdrom/RedHat/RPMS/postfix-XX-xx.rpm

Downloading Postfix from the Red Hat Site

You can also download the Postfix package from the Red Hat FTP site or
one of its mirrors. You'll find a list of the mirrors at http://www.redhat.com/
download/mirror.html. After downloading the package, tell the package
manager to retrieve the file and install it:

rpm -ivh ftp://USER:PASSWORD@HOST:PORT/path/to/postfix-XX-xx.xrpm

Keep in mind that Red Hat does not update these packages at the same
rate as Postfix development advances. If you want to run a Postfix package
with the newest features but don’t want to build it from source code, have a
look at the RPMs that Simon J. Mudd maintains.

Downloading Simon J. Mudd’s Postfix RPMs

Simon’s RPMs are usually more current than the ones that ship with the
Red Hat distribution. You can download ready-made binaries for multiple
platforms, including Linux on Alpha, Sparc, and IBM S390 (mainframe), or
you can get the SRPM (RPM Source Package). The SRPMs provide support
for building binary packages with several options listed on the website.

You'll find mirror sites for Simon’s RPMs and SRPMs at http://
postfix.wlo.org/en/mirrors/.

Downloading Postfix from rpmfind.net

Finally, you’ll find that rpmfind.net has RPMs for many distributions. Point
your browser at http://www.rpmfind.net, search for postfix, and download the
RPM appropriate to your needs.

Building an RPM from an SRPM

For security reasons, you shouldn’t build RPMs from SRPMs as root.
However, building them as a non-root user requires some preparation.
Specifically, RPM needs a certain directory structure to build RPMs from
source code or from SRPMS. By default, these directories are under /usr/src/
redhat.

NOTE

Setting Up the Directory Structure and Environment Variables

When you build an RPM as a regular user, you cannot use the default
location because only root is allowed to write to the default directories. Use
the following script to create the required directory structure in your home
directory, and set appropriate environment variables for RPM:

#!/bin/sh
rpmuser Build user rpmbuild environment
Author: Tuomo Soini <http://tis.foobar.fi>
it
create directories
for i in SOURCES SPECS BUILD SRPMS RPMS/i386 RPMS/i486 RPMS/i586 RPMS/i686 \
RPMS/athlon RPMS/noarch
do
mkdir -p $HOME/rpm/$i
done
unset i
set environment variables
echo "%_topdir $HOME/rpm" >> $HOME/.rpmmacros
EOF

Let’s say that you create a user named rpmuser to build the RPM. After
running rpm_prepare.sh, the user’s home directory should have the following
directories and subdirectories:

$ tree

-- Ipm
|-- BUILD

|

|-- 1386
|-- 1486
|-- i586
|-- 1686
"-- noarch
SOURCES
SPECS

-- SRPMS

"-- rpm_prepare.sh
12 directories, 1 file

The script also sets the correct variables in the .rpmmacros file. You need
to set the environment every time you log in and out as the user who builds
the RPMs. Use the echo "%_topdir $HOME/rpm" >> $HOME/.rpmmacros command
to do this.

If you want to get into more detail on building RPMs, have a look at the RPM
HOWTO at http://rpm.org.

Installing Postfix 4]5

Building and Installing an RPM

You can’t query source packages for the options to build into the binary.
The workaround is to install the source package with rpm -ivh postfix-XX-
xx.src.rpm into the new rpm build directory; then take a look at the script
that is used to build spec files:

$ less rpm/SOURCES/make-postfix.spec

The following external variables if set to 1 affect the behaviour

#

POSTFIX_MYSOL include support for MySQL's MySOL packages

POSTFIX_MYSQL REDHAT include support for RedHat's mysql packages

POSTFIX_MYSQL_PATHS include support for locally installed mysql binary,
providing the colon seperated include and

library paths (/usr/include/mysql:/usr/lib/mysql)
POSTFIX_MYSQL_QUERY include support for writing full select statements
in mysql maps

POSTFIX_LDAP include support for openldap packages

POSTFIX_PCRE include support for pcre maps

POSTFIX PGSOL include support for PostGres database

POSTFIX_SASL include support for SASL (1, 2 or 0 to disable)

POSTFIX_TLS include support for TLS

POSTFIX_IPV6 include support for IPv6

POSTFIX_VDA include support for Virtual Delivery Agent

To rebuild the spec file, set the appropriate environment

variables and do the following:

#

cd “rpm --eval '%{ sourcedir}'"

export POSTFIX_MYSQL=1 # for example

sh make-postfix.spec

cd “rpm --eval '%{ specdir}'"

rpmbuild -ba postfix.spec

Follow the instructions in the script to set the appropriate environment
variables and create your spec file. After you're satisfied with your spec file,
build your RPM with this command:
$ rpmbuild -ba rpm/SPECS/postfix.spec

Upon successful completion, become root and install Postfix:

xpm -ivh /path/to/postfix-XX-xx.rpm

Now all you need to do is tell your Red Hat server to use Postfix as
its MTA.

416 Appendix A

NOTE

Switching to Postfix

The default MTA for Red Hat servers is Sendmail. You can change this by
using alternatives to switch to Postfix.

As of Red Hat 7.3, the distribution comes with a Debian port called alternatives. This
command makes it possible for several programs that perform identical or similar func-
tions to be installed on a single system at the same time.

Become root, invoke alternatives --config mta, and then specify Postfix as
the default MTA:

alternatives --config mta
There are 2 programs which provide 'mta’.
Selection Command

*+1 /usr/sbin/sendmail.sendmail
2 /usr/sbin/sendmail.postfix
Enter to keep the default[*], or type selection number: 2

As the default MTA, Postfix will automatically be started by Red Hat at
boot time. You can check the runlevels by running chkconfig:

chkconfig --list postfix
postfix o:off 1:o0ff 2:on 3:on 4:on 5:on 6:0ff

Removing the Sendmail MTA

After you install Postfix, there’s no reason to keep Sendmail hanging around,
so remove it like this:

xrpm -e sendmail

Starting and Stopping Postfix in Red Hat Linux

Red Hat Linux RPMs usually ship with startup and shutdown scripts that go
in /etc/init.d. You can start Postfix with /etc/init.d/postfix start and stop it
with /etc/init.d/postfix stop.

Installing Postfix 4]?

TROUBLESHOOTING POSTFIX

This chapter contains tips for several
different Postfix trouble areas, including
the system logger, configuration issues,
network oddities, and general system issues.

As with any kind of troubleshooting, when you're
having trouble with Postfix, you need to have an idea
of where the problem is before you can fix it. This is
especially true for Postfix, which has several separate
subsystems.

Problems Starting Postfix and Viewing the Log

The most “obvious” reason for Postfix not to be processing your mail is that
Postfix might not even be running. Postfix must be running, even if you're
only submitting mail using the sendmail command. The easiest way to find out
if Postfix is running is to run postfix start:

postfix start
postfix/postfix-script: starting the Postfix mail system

If you see this message, it means that Postfix wasn’t running, so the
command tried to start it up. However, if Postfix is already running, you’ll
get this message:

postfix start
postfix/postfix-script: fatal: the Postfix mail system is already running

When running this command, you should see similar messages in your
mail log, such as these:

Jul 5 22:49:29 mail postfix/postfix-script: starting the Postfix mail system
Jul 5 22:49:29 mail postfix/master[14835]: daemon started -- version 2.1.3

If you don’t see these messages, check your syslog configuration
immediately. You want to make sure that it logs mail. *; complete logs are
essential for any kind of comprehensive troubleshooting.

We recommend consolidating all syslog entries for the mail facility (or
whichever facility Postfix is configured for) into one log file. Some installa-
tions (such as the one in Debian GNU/Linux) split the log into multiple
files, but this makes reading the log very tedious. To set it up for easy viewing,
make sure your /etc/syslog.conf has an entry like this:

(- Log all the mail messages to one place.)
mail.* -/var/log/maillog

Let’s say that you see the messages on the command line and log, but
you still wonder if Postfix is actually running. Sometimes it pays to be
paranoid, because Postfix can start and crash immediately afterward if
there’s a serious problem. Use ps and grep to see if the Postfix component
daemons are really running. If they are running, the command execution
should look like this:

ps aux|grep postfix

root 5035 0.0 0.4 2476 1100 ? S 09:29 0:00 /usr/lib/postfix/master
postfix 5036 0.0 0.3 2404 936 ? S 09:29 0:00 pickup -1 -t fifo -u -c
postfix 5037 0.0 0.3 2440 964 ? S 09:29 0:00 gmgr -1 -n gmgr -t fifo -u -c

In the preceding output, you can see that the Postfix master daemon
is running as root, and the queue manager (gmgr) and pickup service are
running as the postfix user, so the system is up and running.

There are several reasons why Postfix might fail to start, but the most
common is that a Postfix daemon can’t find a shared library. To approach
this problem, first find the directories that Postfix uses with this command:

postconf | grep directory

command_directory = /usr/sbin
config_directory = /etc/postfix

420 Appendix B

daemon_directory = /usr/lib/postfix

mail spool directory = /var/mail

manpage_directory = /usr/local/man

process_id_directory = pid

program_directory = /usr/sbin

queue_directory = /var/spool/postfix

readme_directory = no

require home directory = no

sample directory = /etc/postfix
tls_random_exchange_name = ${config_directory}/prng_exch

You're looking for the path to daemon_directory. Find it and change to
that directory. Look at the contents:

cd /usr/lib/postfix

#1s -1

total 384

~IWXI-XY-X 1 root root 16588 Sep 12 18:50 bounce
-TWXT-XT =X 1 root root 22684 Sep 12 18:50 cleanup
- TWXT -XT-X 1 root root 4248 Sep 12 18:50 error

- TWXI-XI-X 1 root root 10344 Sep 12 18:50 flush
-TWXT-XT-X 1 root root 20508 Sep 12 18:50 Imtp
-TWXI-XY-X 1 root root 31956 Sep 12 18:50 local
-IWXI-XT-X 1 root root 22388 Sep 12 18:50 master
-IWXI-XI-X 1 root root 33084 Sep 12 18:50 ngmgr
-TWXT-XY-X 1 root root 7248 Sep 12 18:50 pickup
- TWXT -XT =X 1 root root 10496 Sep 12 18:50 pipe

- YWXT -XT-X 1 root root 27424 Sep 12 18:50 qmgr
=TWXT-XY-X 1 root root 12160 Sep 12 18:50 qmqpd
-IWXI-XTY-X 1 root root 7456 Sep 12 18:50 showq
-IWXI-XI-X 1 root root 25000 Sep 12 18:50 smtp
-IWXI-XT-X 1 root root 44712 Sep 12 18:50 smtpd

- TWXT -XT =X 1 root root 5612 Sep 12 18:50 spawn
-IWXT-XTI-X 1 root root 10284 Sep 12 18:50 trivial-rewrite
= TWXT -XT-X 1 root root 10400 Sep 12 18:50 virtual

The Postfix daemons from the command column in the /etc/postfix/
master.cf file should be in this directory. You can inspect the shared library
dependencies of a single program with the 1dd command (this works on
Linux, Solaris, and other common Unix variants; it may be a different
command on other systems):

1dd “postconf -h daemon_directory”/smtpd
libpostfix-master.so.1 => /usr/lib/libpostfix-master.so.1 (0x4001d000)
libpostfix-global.so.1 => /usr/lib/libpostfix-global.so.1 (0x40023000)
libpostfix-dns.so.1 => /usr/lib/libpostfix-dns.so.1 (0x4003c000)
libpostfix-util.so.1 => /usr/lib/libpostfix-util.so.1 (0x40040000)
libdb3.s0.3 => /usr/lib/libdb3.s0.3 (0x4005d000)
libnsl.so.1 =» /lib/libnsl.so0.1 (0x40105000)

Troubleshooting Postfix 42]

422

Appendix B

libresolv.so.2 => /lib/libresolv.so.2 (0x40119000)
libgdbm.so.1 => /usr/lib/libgdbm.so.1 (0x4012a000)
libc.so.6 => /1lib/libc.so.6 (0x40130000)

libdl.so0.2 => /lib/libdl.so.2 (0x4024b000)
/1ib/ld-1linux.s0.2 => /lib/1ld-linux.so0.2 (0x40000000)

The preceding output seems to indicate that everything is in order with
the smtpd daemon because every library dependency resolves to an actual file.
However, you might be unlucky enough to get this instead:

1dd “postconf -h daemon_directory”/smtpd
libpostfix-master.so.1 => /usr/lib/libpostfix-master.so.1 (0x4001d000)
libpostfix-global.so.1 => /usr/lib/libpostfix-global.so.1 (0x40023000)
libpostfix-dns.so.1 => /usr/lib/libpostfix-dns.so.1 (0x4003c000)
libpostfix-util.so.1 => /usr/lib/libpostfix-util.so.1 (0x40040000)
libdb3.s0.3 => not found
libnsl.so.1 => /1lib/libnsl.so0.1 (0x4005d000)
libresolv.so.2 => /lib/libresolv.so.2 (0x40071000)
libgdbm.so.1 => /usr/lib/libgdbm.so.1 (0x40082000)
libc.so0.6 => /1lib/libc.so.6 (0x40088000)
libdl.so.2 => /lib/1libdl.so.2 (0x401a3000)
/1ib/1d-1inux.so0.2 => /1ib/1d-linux.so.2 (0x40000000)

In this case, 1ibdb3.so0.3 is missing. A program that cannot find all of its
shared libraries will not run. If you're running Linux, and you installed a
Postfix package intended for another distribution (or even another version
of your distribution), it’s possible that you may discover this kind of problem
only at run time. If this is the case, you need to make a decision.

The best solution is to find a Postfix package that fits your distribution or
to compile Postfix from source code (see Appendix A). However, if you insist
on trying to work with what you have, you can try to find libdb3.so.3 like this:

find / -name libdb3.so.3
/usr/lib/1ibdb3.s0.3

This command will probably take forever to finish (because it searches
your whole filesystem), but if you're lucky enough to find the library, you can
add its directory path to the /etc/1ld.so.conf file and run ldconfig. Of course,
this might invite library and symbol clashes. It’s almost never a good idea to
mess around with shared libraries unless you really know what you're doing.

The find command may not even help, because the library may not
reside on your system. If this is the case, you might be able to find the
package that contains the library. However, if you just can’t seem to work it
out, you need to make a tough decision. If finding a Postfix package that
works seems out of the question, and compiling from source code seems
daunting, you might consider switching operating systems or distributions.

Connecting to Postfix

If Postfix starts up fine but doesn’t behave as expected, see if your server
actually accepts connections on port 25. Connect to the SMTP port to find
out. Here’s how a successful connection plays out:

telnet localhost 25

220 mail.example.com ESMTP Postfix
QUIT

221 Bye

You may be able to connect to the loopback interface, but this doesn’t
mean that the entire Internet can. Let’s say that your machine is at
10.1.2.233. Try it again, this time connecting to that address:

telnet 10.1.2.233 25

220 mail.example.com ESMTP Postfix
QuIT

221 Bye

If this doesn’t work, the first thing to do is look in your main.cf file to see
if inet_interfaces has been set but excludes the IP address that you're trying
to reach. The default is to listen on all interfaces.

Checking the Network

If the Postfix configuration seems fine, and Postfix has been restarted, but
you still can’t establish a connection, check the firewall or IP filtering
configuration of your network. It’s possible that your system blocks the port
by default. There are several places to look, because IP filtering can happen
through an operating system firewall script (for example, something that
calls iptables or ipf), or it can be performed outside of the machine by
firewall appliances and routers.

You have to check everywhere.

If your configuration seems correct so far, you need to check outside of
your local network. Your ISP can block incoming traffic to your port 25 (and,
incidentally, outgoing traffic to port 25 on another machine). If you find that
your ISP is refusing incoming traffic and it refuses to open up the port, your
only recourse is to change ISPs.

To see if an outsider can reach you, run this command:

telnet relay-test.mail-abuse.org

When you make this connection, relay-test.mail-abuse.org performs an
online relay test of the machine that made the connection. If your ISP (or
your own firewall) doesn’t block incoming connections to your box on port
25, then you should see quite a few messages in your log file.

Troubleshooting Postiix 423

424

Appendix B

If you can’t connect to the preceding host, you may be having name
resolution problems. Test it with this command:

host relay-test.mail-abuse.org
relay-test.mail-abuse.org is an alias for cygnus.mail-abuse.org.
cygnus.mail-abuse.org has address 168.61.4.13

You should see an IP address, as shown in the preceding output. If
you don’t, you can’t resolve hostnames. Your /etc/resolv.conf or /etc/
nsswitch.conf file (or both) could be incorrect. It could be even worse; your
machine might not even be able to connect to the Internet. Try to ping
something. A successful test looks like this (use CTRL-C to stop the test):

ping 134.169.9.107

PING 134.169.9.107 (134.169.9.107): 56 data bytes

64 bytes from 134.169.9.107: icmp_seq=0 ttl=54 time=12.1 ms
64 bytes from 134.169.9.107: icmp_seq=1 ttl=54 time=12.1 ms
64 bytes from 134.169.9.107: icmp_seq=2 ttl=54 time=12.1 ms
--- 134.169.9.107 ping statistics ---

3 packets transmitted, 3 packets received, 0% packet loss
round-trip min/avg/max = 12.1/12.1/12.1 ms

Verifying the Listening Process

If Postfix is running and your network checks out, but your test connections
still don’t seem to work, see if Postfix is actually listening on port 25 with the
netstat command:

netstat -t -a | grep LISTEN

tep 0 0 *:printer ok LISTEN
tep 0 0 localhost:domain koK LISTEN
tep 0 0 *:ssh * ¥ LISTEN
tep 0 0 *:smtp *i¥ LISTEN

The preceding output shows that there are servers listening on the
printer, domain, SSH, and SMTP ports (check /etc/services for the
numerical counterparts of the names). You can see that something is
listening on port 25 (smtp). However, is this Postfix or something else?

The 1sof command can tell you. Try the command that follows. If the
output includes sendmail listening on port 25, then your old sendmail binary
is still active:

lsof -i tcp:25

COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME

sendmail 25976 root 4u IPv4 228618 TCP mail.example.com:smtp
(LISTEN)

Kill this process, and edit your system startup files so that it won’t come
back when you reboot (if at all possible, remove Sendmail from your system
entirely, because you're supposed to run Postfix, remember?).

NOTE Isof is an extremely powerful tool that can show all open files (and the processes using
the files), but it is very dependent on your kernel. Make sure that your 1sof is wp-to-date
and matches your current kernel. An outdated 1sof returns no output for Internet con-
nections at all. Run 1sof -i if you're not sure if it works.

If you're using Postfix, the 1sof output should include Postfix listening
on port 25 with the master daemon:

lsof -i tcp:25
COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME
master 26079 root 11lu IPv4 228828 TCP *:smtp (LISTEN)

Getting Postfix to Use Your Configuration Settings

The main.cf file is long and can be difficult to read. A configuration option
can appear twice, or a typo can be hidden somewhere in a pile of comments.
Use the postconf command to display the configuration that Postfix uses. You
can see the difference just from line counts:

cd /etc/postfix
wc -1 main.cf
postconf -n | wc -1

The output of postconf -n lists all parameter settings in main.cf, even
parameters that have the same value as the default. When changing main.cf,
you should verify your changes with postconf to see if Postfix sees them.

You might prefer to use the command postconf -e parameter=value to edit
the parameter in main.cf to value programmatically. This little trick allows you
to make changes to the Postfix configuration with shell scripts or cron jobs.

If you're approaching a configuration issue, the postconf(5) manual
page is worth reading.

Reporting Postfix Problems

When you are first starting out with Postfix, it can be difficult to judge the
kind of information that should be reported to postfix-users@postfix.org.
The postfinger program (by Simon J. Mudd) extracts most of the relevant
information. To see what it does, mail the postfinger output, along with
your own questions, to yourself like this:

postfinger | /usr/sbin/sendmail youraddress@your.domain

Troubleshooting Postiix 425

426

NOTE

Of course, this assumes that outgoing mail works on your system. When
all else fails, you can transfer the output to another system.

If your problem is related to SMTP-AUTH and thus SASL, use Patrick’s
script salsfinger! saslfinger is a bash utility script that seeks to help you
debug your SMTP AUTH setup. The saslfinger program gathers various
information about Cyrus SASL and Postfix from your system and sends it to
stdout. To see what it does, mail the saslfinger output, along with your own
questions, to yourself like this:

saslfinger -s | /usr/sbin/sendmail youraddress@your.domain

Postfinger has been part of the source distribution of Postfix since version 2.1. You can
also get it al ftp://ftp.wlo.org/sources/postfinger.

sas1finger is not part of the source distribution of Posifix. You can get it at
http://postfix.state-of-mind.de/patrick.koetter/saslfinger.

Getting More Logging Information

Appendix B

If you’re having trouble zeroing in on problems with specific pieces of your
Postfix installation, you can increase the amount of logging information on a
per-daemon basis. Do this by appending -v to the daemon configuration
entry in /etc/postfix/master.cf, as in this example for smtpd:

=== == = = = == == == = = S
service type private unpriv chroot wakeup maxproc command + args

(yes) (yes) (yes) (never) (50)

=== == = = = == == == = = ===z
smtp inet n - - - - smtpd -v

To make the change take effect, reload Postfix. The daemon should now
be very verbose when it does its work. If this still isn’t enough information,
you can even add another -v to the entry, and you'll get even more output.
Make sure that you set it back to normal after you're finished with
debugging, because verbose logging generates lots of lines in your log file,
hindering the overall system performance.

Client-Specific Logging

If you have a busy mail server, and increasing the log level for all clients will
bury you in output, you can also selectively increase logging for certain
clients with the debug_peer_list parameter. The following example shows how
to make the smptd logging more verbose for only the clients at 10.0.0.1 and
10.0.0.4:

debug_peer_list = 10.0.0.1, 10.0.0.4

You can specify one or more hosts, domains, addresses, and networks as
the value for this parameter. To make the change effective immediately, you
need to run the postfix reload command.

Logging and qmgr

One common problem is that log output from the gmgr process is missing.
The queue manager should emit log entries like this:

Aug 5 17:05:26 hostname postfix/qmgr[308]: A44F828C71:
from=<bamm@example.com>, size=153136, nrcpt=1
(queue active)

If you’re missing the log information, there are two possible causes:

libc problems
The libc implementation is broken (the syslog client does not reconnect
when the syslogd server is restarted). If this is the case, you should
upgrade your libc.

gmgr is running chrooted
The Postfix gmgr process is running chrooted (see master.cf), but there is
no syslog socket inside the chroot jail. See the syslog(8) manual page for
how to specify additional sockets and to specify one for the Postfix
chroot jail.

Other Configuration Errors

There are three errors that seem to happen all of the time:

Problems opening files
If you have a problem opening a file that seems to exist, see if it’s speci-
fied as a map in the configuration file (for example, if it starts with a
hash: prefix). If this is the case, run postmap on the plaintext file that con-
tains the map data to create an indexed version.

Also, verify that the permissions and ownership are correct. Don’t
forget executable access on the directory and all directories leading up
to it.

Permissions problems
If you have permissions problems, you can see whether Postfix can fix
them automatically with the post-install command:

[letc/postfix/post-install set-permissions upgrade-configuration

This command edits main.cf and master.cf as appropriate, in
addition to fixing permission problems, so you might want to make a
backup of your configuration before doing this.

Troubleshooting Postiix 42?

Comments
Any line whose first non-space character is a hash (#) is a comment. Post-
fix doesn’t accept any other comment syntax. If postconf shows a parame-
ter that seems unfamiliar, you may have a misplaced # somewhere in your
configuration file.

Intricacies of the chroot Jail

All too often, the ability to run chrooted causes strange problems. A Postfix
installation never runs chrooted by default. There are just too many things
that can go wrong, so Wietse wisely chose not to chroot by default. Unfortu-
nately, other package maintainers sometimes go a little crazy with security
features.

Postfix daemons open all their maps before entering the jail. However,
system files that are needed for DNS lookups, other host related lookups,
network service lookup, timezone lookup, and other stuff that happens in
libraries that are linked into Postfix must be in the chroot jail. The package
maintainer needs to provide scripts that copy the necessary files from their
original locations in the filesystem into the jail. You typically need /etc/
resolv. conf and /etc/nsswitch.conf. The Postfix source distribution includes
an examples/chroot-setup subdirectory that contains scripts for setting up a
chroot jail under different operating systems. Matthias Andree wrote a LINUX2
script that sets things straight on Linux.

In theory, a package maintainer should include the mechanism to build
the chroot jail correctly on your particular operating system or distribution.
However, if you're just starting out, you could be overwhelmed. Instead of
correcting your chroot jail, which you never knew existed at all, you should
probably un-chroot Postfix’s daemons until you get Postfix fully operational.
Edit /etc/postfix/master.cf, and look at each entry:

=== == = = = == == == = = ====
service type private unpriv chroot wakeup maxproc command + args

(yes) (yes) (yes) (never) (50)

=== == = = = == == == = = ====
smtp inet n - - - - smtpd

A hyphen in the chroot column indicates that smtpd is running chrooted.
Set this to n, and reload Postfix. In addition, remember that not every Postfix
daemon can run chrooted. Most of them can, but you're likely to encounter
bizarre problems if you try to chroot the pipe, local, or virtual daemons.

You'll find a lot more information about the chroot process in Chapter 20.

Solving Filesystem Problems

Most modern Unix flavors offer journaling filesystems, but this may not
protect you from occasional filesystem corruption, especially if you have
bad hardware or are using a newfangled filesystem that hasn’t been fully

428 Appendix B

debugged. If there are very strange things happening, such as directories
turning into files, consider an immediate reboot with a full forced fsck of
all disks with a series of commands like this:

touch /forcefsck
sync
reboot

Yes, you won’t have a pretty uptime number, and users will complain, but
you cannot fix filesystem problems without forcing fsck. We've successfully
annoyed many users on Red Hat and Debian this way.

Library Hell

Postfix makes extensive use of shared libraries, such as the BerkeleyDB
library. This particular library causes a lot of problems because there are so
many different versions with different on-disk data formats. All mail service
components, such as Postfix, POP-before-SMTP, dracd, postgrey, and other
tools that access and alter hash: or btree: type maps need to use compatible
BerkeleyDB libraries.

It gets even worse; on-disk formats for different versions of BerkeleyDB
are incompatible, meaning that an application may not be able to read a
map written by another application that uses a different version of
BerkeleyDB.

To check the libraries that Postfix uses, use the 1dd command as
described in the section “Problems Starting Postfix and Viewing the Log™

ldd “postconf -h daemon_directory”/smtpd
libpcre.so.0 => /usr/local/lib/libpcre.so.0 (0x4001d000)
libdb-3.1.s0 => /1ib/1libdb-3.1.50 (0x40028000)
libnsl.so.1 => /1lib/libnsl.so0.1 (0x400a1000)
libresolv.so.2 => /1lib/libresolv.so.2 (0x400b8000)
libc.so.6 => /1lib/libc.so0.6 (0x400ca000)
/1ib/1d-1inux.s0.2 => /lib/1d-linux.so0.2 (0x40000000)

In the preceding output, smtpd was linked against BerkeleyDB-3.1.x, so all
other programs that need to share the Postfix hash: and btree: maps must use
the same version of BerkeleyDB (or at least a version that has the same on-
disk format).

Daemon Inconsistencies

If an upgrade of Postfix fails, or if you do it in a nonstandard way (such as
installing from source over an RPM install instead of removing the old
version first), strange things can happen. You may be mixing daemons from
different versions of Postfix.

Troubleshooting Postiix 429

430

To find out the version of Postfix that a daemon belongs to, use strings
on all daemon binaries, like this:

strings /usr/libexec/postfix/smtpd | grep 2003
2.0.13-20030706

20030706

strings /usr/libexec/postfix/cleanup | grep 2003
2.0.13-20030706

20030706

In this case, the versions (represented as dates) actually match. We've
used 2003 as the year in this example, but you're using a version from
another year, grep for that year instead.

Fork Hell

One common problem that is caused by mixing daemons from incompatible
Postfix versions has to do with the tlsmgr daemon. The load appears to be
incredibly high and process IDs are increasing constantly, but nothing’s
running, and there isn’t even much mail traffic or queued mail.

You probably upgraded Postfix but kept an old tlsmgr and master.cf file
that runs tlsmgr.

The problem is that the new Postfix spawns the old tlsmgr, but this
daemon immediately exits with status 0 because it can’t work with the
new version of Postfix. Postfix logs nothing because an exit code of 0 is
normal. However, Postfix immediately respawns tlsmgr, and the process
repeats itself.

If this turns out to be the case, first comment out the tlsmgr line in
master.cf, then reload Postfix to resume normal services. Then you can
get a working upgrade with a compatible version of tlsmgr.

Stress-Testing Postfix

Appendix B

To find out how much mail traffic your installation can handle, you need
to perform some kind of stress testing. To put an adequate load on the
server, you need a fast mail generator. Postfix comes with a pair of testing
programs named smtp-source and smtp-sink for just this purpose. Here’s
how they work:

smtp-source
This program connects to a host on a TCP port (port 25 by default) and
sends one or more messages, either sequentially or in parallel. The pro-
gram speaks both SMTP (the default) or LMTP, and it is meant to aid in
measuring server performance.

smtp-sink
This test server listens on the named host (or address) and port.
It receives messages from the network and throws them away. You can
measure client and network performance with this program.

Let’s start with smtp-source to stress-test your Postfix installation. The
following example injects 100 total messages of size 5KB each in 20 parallel
sessions to a Postfix server running on localhost port 25. Because you're also
interested in how much time this takes, use the time command:

$ time ./smtp-source -s 20 ® -1 5120 @ -m 100 © -c © \
-f sender@example.com © -t recipient@example.com @ localhost:25 @
100
real om4.294s
user 0mo. 060s
sys 0mo.030s

O 20 parallel sessions

® 5KB message size

© 100 total messages

O Display a counter

© Envelope sender

@ Envelope recipient

@ Target SMTP server

In this example, injection took 4.294 seconds. You also want to know
how long actual delivery takes. Check your logs for this and to verify that
every last message that arrived for recipient@example.com was received.

Now let’s turn our attention to smtp-sink to find out how many messages
per second your server can handle from your horrible mass-mailing software.
Postfix has to process each outgoing message even if the server on the other
side throws it away (so you can’t use this to test the raw performance of your
mass mailer unless you connect your mailer directly to smtp-sink).

The following example sets up an SMTP listener on port 25 of localhost:

$./smtp-sink -c localhost:25 1000

Now you can run your client tests.

If you want to get an idea of how much overhead the network imposes,
and also run a controlled experiment to see what the theoretical maximum
throughput is for your mail server, you can make smtp-source and smtp-sink
talk to each other. Open two windows, and in the first, start up the dummy
server like this:

./smtp-sink -c¢ localhost:25 1000
100

Troubleshooting Postiix 43]

432

Appendix B

With this in place, start throwing messages at this server with smtp-source
in the other window:

$ time ./smtp-source -s 20 -1 5120 -m 100 -c \
-f sender@example.com -t recipient@example.com localhost:25
100
real 0omo.239s
user 0mo0.000s
sys 0mo0.040s

This output shows that smtp-sink is much faster at accepting messages
than Postfix. It took only 0.239 seconds to accept the messages, which is 18
times faster than the Postfix injection process. Now, wouldn’t it be nice if you
could throw away all incoming email like this?

Disk 1/0

When you run your stress testing, you might encounter huge load averages
on your machine that seem out of place. Assuming that you don’t have any
content filtering in place, Postfix is I/O bound, so your 1/0 subsystem could
be saturated.

If the output of top shows a high load, such as 10.7, but none of your
processes are actually using the CPU, your load is probably coming from the
kernel using most of the CPU for I/O and not letting processes run. Further-
more, the reason that the kernel is doing so much I/O is that many more
processes have requested I/O operations (and are now waiting for them).

Linux 2.6 kernels support iowait status in the top command. To see if this
is the case on 2.4.xkernels (which don’t have a separate means of displaying
the iowait status), you can add a kernel module. Oliver Wellnitz wrote just
such a kernel module that you can download from ftp://ftp.ibr.cs.tu-bs.de/
os/linux/people/wellnitz/programming. This module calculates the load dif-
ferently and gives you an interface in the /proc filesystem that you can see,
like this:

cat /proc/loadavg-io
rq 0.30 0.23 0.14
io 0.08 0.31 0.27

In this example, rq is the number of processes that are in the state
TASK_RUNNING, while io is the number of processes that are in the state
TASK_UNINTERRUPTIBLE (waiting for I/O). The sum of those two is what the
kernel usually calls load.

If you're having problems like this, you need faster disks, or even a

solution such as an SSD (a solid state disk—basically a RAM disk with a
battery backup) or a mirrored or striped RAID for the queue directory.
See the section “Incoming Queue Bottlenecks” in Chapter 22 for more
information.

One other solution that may or may not work is to remove the syn-

chronous updates for the queue directory. If you're using an ext2 or ext3
filesystem, try this command:

chattr -R -S /var/spool/postfix/

This setting is actually the default with recent Postfix installations.

Too Many Connections

When you set up your mail server, you may try to tackle too many problems
at once. If you want a stable Postfix system, change one thing at a time.

This especially holds true if you want to use LDAP or SQL. Try proceeding
like this:

Build your system without LDAP maps (that is, use hash, btree or dbm
maps).

Use appropriate ldapsearch commands to extract all the necessary data
from your LDAP server. Use a scripting language, such as Perl or Python,
to reformat the data into the Postfix map file input.

When your Postfix is working correctly without LDAP, replace one map
at a time with a corresponding LDAP map. Test each LDAP map as user
postfix, like this:

$ postmap -q - ldap:mapname < keyfile

keyfile contains a list of addresses (keys) to be queried. If the map
returns sensible data, change a suitable _maps configuration parameter to
have Postfix use the LDAP map.

To consolidate the number of open lookup tables, share one open table
among multiple Postfix processes with the proxymap daemon, as described
in the section titled “Postfix Daemons” in Chapter 5.

Troubleshooting Postiix 433

CIDR AND SMTP STANDARDS
REFERENCE

This first section in this chapter explains

';t
L\
the Classless Inter Domain Routing (CIDR)

\‘ notation that Postfix can use in cidr: type

maps and for the mynetworks parameter. The second

section cites possible SMTP server response codes from
RFC 2821.

Subnets in CIDR Notation

In CIDR notation, an IP address is represented as A.B.C.D/n, where n is
called the IP prefix or network prefix. The IP prefix identifies the number of
significant bits used to identify a network. For example, 192.9.205.22 /18
means the first 18 bits are used to represent the network and the remaining
14 bits are used to identify hosts. Common prefixes are 8, 16, 24, and 32.

Even if you claim to have been fooling around with computers since you
were 10, and to have been one of the first to get online (back when the word
ARPANET meant something), you may still have trouble remembering
subnet masks in CIDR notation. Table C-1 lists the subnet masks and their

equivalents.

Table C-1: Subnets in CIDR Notation

CIDR Prefix Netmask

Binary Value

Number of Networks

/1

/2

/3

/4

/5

/6

/7

/8

/9

/10
/11
/12
/13
/14
/15
/16
/17
/18
/19
/20
/21
/22
/23
/24
/25
/26
/27
/28
/29
/30
/31
/32

128.0.0.0
192.0.0.0
224.0.0.0
240.0.0.0
248.0.0.0
252.0.0.0
254.0.0.0
255.0.0.0
255.128.0.0
255.192.0.0
255.224.0.0
255.240.0.0
255.248.0.0
255.252.0.0
255.254.0.0
255.255.0.0
255.255.128.0
255.255.192.0
255.255.224.0
255.255.240.0
255.255.248.0
255.255.252.0
255.255.254.0
255.255.255.0
255.255.255.128
255.255.255.192
255.255.255.224
255.255.255.240
255.255.255.248
255.255.255.252
255.255.255.254
255.255.255.255

10000000000000000000000000000000
11000000000000000000000000000000
11100000000000000000000000000000
11110000000000000000000000000000
11111000000000000000000000000000
11111100000000000000000000000000
11111110000000000000000000000000
11111111000000000000000000000000
11111111100000000000000000000000
11111111110000000000000000000000
11111111111000000000000000000000
11111111111100000000000000000000
TT111111111110000000000000000000
1T111111111111000000000000000000
1T111111111111100000000000000000
TT111111111111110000000000000000
11111111111111111000000000000000
TT1T1111111111111100000000000000
11111111111111111110000000000000
TTTT1111111111111111000000000000
TTIT111T111111111111100000000000
TTIT11IT111111111111110000000000
TTIT1111111111111111111000000000
TTITITIT111111111111111100000000
TT1T1111111111111111111110000000
TTIT111T111111111111111111000000
TTIT111T111111111111111111100000
TTITITIT I I 111111111111 10000
TTITI1IT111111111111111111111000
TTITITITTI I 11ii11111100
TTITITIT0I00 0001011111111 110
TTITITIT I i

128 Class A domains
64 Class A domains
32 Class A domains
16 Class A domains
8 Class A domains
4 Class A domains
2 Class A domains
1 Class A domain
128 Class B domains
64 Class B domains
32 Class B domains
16 Class B domains
8 Class B domains
4 Class B domains
2 Class B domains

1 Class B domain
128 Class C domains
64 Class C domains
32 Class C domains
16 Class C domains
8 Class C domains
4 Class C domains
2 Class C domains
1 Class C domain
128 hosts

64 hosts

32 hosts

16 hosts

8 hosts

4 hosts

2 hosts

1 host

436

Appendix C

Server Response Codes

NOTE

The following server response codes can help you to understand log
messages or to set response codes that differ from Postfix’s default settings.
The codes are excerpts from RFC 2821, section 4.2.

4.2.1 Reply Code Severities and Theory

The three digits of the reply each have a special significance. The
first digit denotes whether the response is good, bad or incomplete. An
unsophisticated SMTP client, or one that receives an unexpected code,
will be able to determine its next action (proceed as planned, redo,
retrench, etc.) by examining this first digit. An SMTP client that wants
to know approximately what kind of error occurred (e.g., mail system
error, command syntax error) may examine the second digit. The third
digit and any supplemental information that may be present is reserved
for the finest gradation of information.

There are five values for the first digit of the reply code:

1yz Positive Preliminary reply
The command has been accepted, but the requested action is being
held in abeyance, pending confirmation of the information in this
reply. The SMTP client should send another command specifying
whether to continue or abort the action.

Unextended SMTP does not have any commands that allow this type of reply, so it does
not have continue or abort commands.

2yz Positive Completion reply
The requested action has been successfully completed. A new request
may be initiated.

3yz Positive Intermediate reply
The command has been accepted, but the requested action is being
held in abeyance, pending receipt of further information. The SMTP
client should send another command specifying this information. This
reply is used in command sequence groups (i.e., in DATA).

4yz Transient Negative Completion reply
The command was not accepted, and the requested action did not
occur. However, the error condition is temporary and the action may
be requested again. The sender should return to the beginning of the
command sequence (if any). It is difficult to assign a meaning to
“transient” when two different sites (receiver- and sender-SMTP
agents) must agree on the interpretation. Each reply in this cate-
gory might have a different time value, but the SMTP client is
encouraged to try again. A rule of thumb to determine whether a
reply fits into the 4yz or the 5yz category (see below) is that
replies are 4yz if they can be successful if repeated without any
change in command form or in properties of the sender or receiver
(that is, the command is repeated identically and the receiver does
not put up a new implementation.)

CIDR and SMTP Standards Reference 437

438

Appendix C

Syz

Permanent Negative Completion reply

The command was not accepted and the requested action did not occur.
The SMTP client is discouraged from repeating the exact request (in
the same sequence). Even some “permanent” error conditions can be
corrected, so the human user may want to direct the SMTP client to
reinitiate the command sequence by direct action at some point in
the future (e.g., after the spelling has been changed, or the user
has altered the account status).

-]

.3. Reply Codes in Numeric Order

211 System status, or system help reply

214 Help message

(Information on how to use the receiver or the meaning of a partic-
ular non-standard command; this reply is useful only to the human
user)

220 <domain> Service ready
221 <domain> Service closing transmission channel
250 Requested mail action okay, completed

251 User not local; will forward to <forward-path>
(See section 3.4) [ann.: in RFC 2821]

252 Cannot VRFY user, but will accept message and attempt delivery
(See section 3.5.3) [ann.: in RFC 2821]

354 Start mail input; end with <CRLF>.<CRLF>

421 <domain> Service not available, closing transmission channel
(This may be a reply to any command if the service knows it must
shut down)

450 Requested mail action not taken: mailbox unavailable
(e.g., mailbox busy)

451 Requested action aborted: local error in processing
452 Requested action not taken: insufficient system storage

500 Syntax error, command unrecognized
(This may include errors such as command line too long)

501 Syntax error in parameters or arguments

502 Command not implemented (see section 4.2.4) [ann.: in RFC 2821]
503 Bad sequence of commands

504 Command parameter not implemented

550 Requested action not taken: mailbox unavailable
(e.g., mailbox not found, no access, or command rejected for policy
reasons)

551 User not local; please try <forward-path>
(See section 3.4) [ann.: in RFC 2821]

552 Requested mail action aborted: exceeded storage allocation

553 Requested action not taken: mailbox name not allowed
(e.g., mailbox syntax incorrect)

554 Transaction failed (Or, in the case of a connection-opening
response, “No SMTP service here”)

Copyright (C) The Internet Society (2001)

This document and translations of it may be copied and furnished to
others, and derivative works that comment on or otherwise explain it or
assist in its implementation may be prepared, copied, published and dis-
tributed, in whole or in part, without restriction of any kind, provided
that the above copyright notice and this paragraph are included on all
such copies and derivative works. However, this document itself may not
be modified in any way, such as by removing the copyright notice or ref-
erences to the Internet Society or other Internet organizations, except
as needed for the purpose of developing Internet standards in which case
the procedures for copyrights defined in the Internet Standards process
must be followed, or as required to translate it into languages other
than English.

CIDR and SMTP Standards Reference 439

GLOSSARY

A

Arecord InDNS,arecord that maps a hostname to an IP address.

Active Directory Microsoft’s directory service. It is a centralized system to
distribute data related to users, networks, and security settings. Think of it as
LDAP with Kerberos, but with value-added non-conformance to standards.

Active Directory Service Interface (ADSI) An API that enables program-
mers of scripts or C/C++ programs to easily query and manipulate the
objects in the Active Directory.

attachment A file within an email message.

base64 encoding A data-encoding scheme that converts binary-encoded

encodings used in Internet email.

blind carbon copy An email header, noted as bec:, that lists addresses to
which a message should be sent, not seen by the recipients. See also carbon
copy.

Boolean A variable holding a truth value, either true or false.

C

carbon copy An email header, noted as cc:, that lists secondary addresses to
which a message should be sent, visible to all recipients.

certificate A file that holds information to prove the identity of a person or
machine.

certification authority (CA) An authority that issues and manages digital
identities.

chroot The chroot() system call specifies a new root directory for a process.

442

Glossary

CNAME record In DNS, a CNAME record, also known as a canonical
name, is a record that expands an alias. Depending on the DNS tree involved
(forward or in-addr.arpa), a CNAME can refer to an A record or to a PTR
record. See also A record and PTR record.

comment A note inside configuration files or source code that provides
helpful information about bits of configuration or code.

daemon A process that runs and performs its services in the background of
a computer.

DCF-77 An encoded time signal sent on the long-wave frequency 77.5 kHz.
The Physikalisch-Technische Bundesanstalt (http://www.ptb.de) in Germany
is the official source of this signal, which distributes the correct time for Ger-
many. Anyone may use this signal to synchronize devices to the official time.
demilitarized zone A neutral zone between private and public networks
that gives users from the public network controlled access to data provided
by the private network. See also firewall.

dial-up user list (DUL) An RBL-style blacklist that contains IP addresses of
known dial-up pools.

dictionary attack Refers to obtaining a recipient’s address by running
through a list of likely possibilities, often a list of words from a dictionary.
distribution An operating system set comprising a kernel, an operating sys-

tem, assorted free software, and sometimes proprietary software. The term is
most commonly used with respect to Linux.

domain A group of computers whose hostnames share a common suffix,
the domain name. See also top-level domain, domain name service (DNS).

domain name service (DNS) A general purpose, distributed, and replicated
data query service chiefly used on the Internet for translating hostnames into
Internet addresses.

dynamic IP address An IP address that is assigned to a computer’s network
interface from a pool of IP addresses upon connecting to a network.

dynamic linking A program execution system where the operating system
loads and links library code for an executable when the executable runs. See
also library.

Extended Simple Mail Transfer Protocol (ESMTP) A set of extensions to
the original SMTP protocol that enables a mail client to ask a mail server
about its capabilities.

external application An application outside of Postfix, such as a virus scan-
ner or a script.

false positive Occurs when a test incorrectly reports a condition as true.

firewall A gateway server that controls inbound and outbound connections
between a private and public network. It can also provide controlled access
from the outside to a demilitarized zone. See also demilitarized zone.

first-in, first-out (FIFO) A system of handling requests or data. A queue is a
FIFO; whatever goes in first is processed first. The idea is always to handle the
oldest request first.

fully qualified domain name (FQDN) The full name of a system, consisting
of its local hostname and its domain name, including a top-level domain. For
example, mail is a hostname and mail.example.com is an FQDN. An FQDN
should be sufficient to determine a unique Internet address for any host

on the Internet. This process (called name resolution) uses the domain name
service (DNS).

G

groupware A highly integrated application that consists of several programs
that provide various services, such as email, time planning, address database,
and news services.

hexadecimal A base-16 numeral system, usually written using the symbols
0-9 and A-F or a—f.

include file Include (header) files contain function prototypes, constant
definitions, and macros necessary for compiling software. Most include files
correspond to a library. See also library.

Internet Assigned Number Authority (IANA) The central registry for vari-
ous assigned numbers in the Internet Protocol, such as ports, protocols,
enterprise numbers, options, codes, and types.

Internet Message Access Protocol (IMAP) A protocol allowing a client to
access and manipulate email messages on a server. It permits manipulation
of remote message folders (mailboxes) in a way that is functionally equiva-
lent to local mailboxes.

IMAP includes operations for creating, deleting, and renaming
mailboxes; checking for new messages; permanently removing messages;
searching; and selective fetching of message attributes, texts, and portions
thereof. It does not specify a means of posting mail; this function is handled
by a mail transfer protocol such as SMTP.

Glossary 443

444

Glossary

interprocess communication (IPC) An application programming interface
(API) and underlying support that allows several running processes to talk to
each other.

kernel The foundation of an operating system. A kernel is responsible for
providing various computer programs with secure access to the machine’s
hardware.

L

left-hand side (LHS) In a map with two columns, the left-hand side is the
left column. In Postfix, the left-hand side of an entry is called the key.

library A collection of precompiled machine code that can be linked to
when compiling programs. Libraries serve as helper code for other pro-
grams. See alsoinclude file.

Lightweight Directory Access Protocol (LDAP) A protocol for accessing
online directory services. It defines a relatively simple protocol for updating
and searching directories running over TCP/IP.

Local Mail Transfer Protocol (LMTP) A derivative of SMTP, the Simple
Mail Transfer Protocol. See also Simple Mail Transfer Protocol (SMTP).

macro A short instruction that expands into a set of larger instructions.

mail exchange record (MX record) A DNS resource record indicating the
host that handles email for a hostname.

mail user agent (MUA) A program that allows a user to compose and read
email messages. The MUA provides the interface between the user and the
message transfer agent (MTA). Outgoing mail is eventually transmitted to an
MTA for delivery, and incoming messages are picked up from where the mail
delivery agent (MDA) left them.,

malicious software (malware) A program or a file that is harmful to a
computer.

man-in-the-middle attack Describes an attack where an attacker sits in
between the communication of two parties. The attacker is able to read and
modify the messages sent between the two parties without the parties know-
ing that the link between them has been compromised.

map A map in Postfix is a table of two columns, where each line represents
an entry that associates a key with a value. The key and value are sometimes
referred to as the left-hand side and the right-hand side. See also left-hand
side (LHS), right-hand side (RHS).

mbox format A file format used for holding email messages. All messages
are concatenated in one file, separated by a From line at the beginning of
each message and followed by a blank line at the end.

message transport agent (MTA) A program responsible for receiving
incoming email and/or delivering it to individual users. It may also transport
nonlocal messages to their remote destinations. See also Internet Message
Access Protocol (IMAP), Post Office Protocol (POP), and Simple Mail Trans-
fer Protocol (SMTP).

Multipurpose Internet Mail Extensions (MIME) An Internet standard for
the format of email.

mumble A word often used on the Postfix mailing list to describe a set of
parameters that share the same name, but differ in some part. For example,
smtpd_mumble_restrictions subsumes all smtpd restrictions such as smtpd_client_
restrictions, smtpd_sender_restrictions, smtpd_recipient_restrictions, smtpd_
data_restrictions, and so on.

name resolution The process of resolving a hostname to an IP address.

network address translation (NAT) Sometimes known as Network masquer-
ading or IP masquerading, network address translation is a technique used in
computer networking for allowing a private network to access a public net-
work through a single point. It relies on rewriting IP addresses of network
packets passing through a router or firewall.

Network Time Protocol (NTP) An Internet protocol used to synchronize
the clocks of computers to some time reference. NTP is an Internet standard
protocol originally developed by Professor David L. Mills at the University of
Delaware.

0

open proxy A misconfigured proxy that processes connection requests
from third parties. Open proxies can be used to submit mail to servers by
means of that open proxy.

open relay An SMTP server that forwards mail between third parties. A
third-party message relay occurs when a mail server processes a mail message
where neither the sender nor the recipient is a local user.

P

patch A (temporary) addition to a piece of code, usually as a remedy to an
existing bug or to provide a new feature.

Glossary 445

446

Glossary

port A (network) portis an interface for communicating with a computer
program over a network. Network ports are usually numbered, and a net-
work implementation, such as TCP or UDP, attaches a port number to data it
sends; the receiving implementation uses the attached port number to figure
out which computer program to send the data to.

Post Office Protocol (POP) A protocol for retrieving email from a server.
Messages are downloaded immediately from the server. See also Internet Mes-
sage Access Protocol (IMAP), Simple Mail Transfer Protocol (SMTP).

Pretty Good Privacy (PGP) A computer program that provides crypto-
graphic privacy and authentication.

proxy Aserver that acts on behalf of another server, typically in a transpar-
ent manner.

PTR record In DNS, a record that maps an IP address to a hostname.

Q

Quick Mail Queuing Protocol (QMQP) OMQP provides a centralized mail
queue within a cluster of hosts. One central server runs a message transfer
agent. The other hosts do not have their own mail queues; they give each
new message to the central server through QMQP. QMQP was invented by
D.J. Bernstein, also the inventor of qmail.

redundant array of independent disks (RAID) A method of storing data
on multiple disks. All disks in a RAID system appear to the operating system
as a single disk. A RAID system can balance I/O operations, thus increasing
performance.

regular expression A regular expression (abbreviated as regexp, regex, or
regxp) is an advanced pattern-matching system that is actually the result of a
nondeterministic finite-state automaton that accepts a particular language.

Request for Comments (RFC) A formal document from the Internet Engi-
neering Task Force (IETF). RFCs are either informational or meant to
become Internet standards and provide for interoperability among networks
and applications. Although one can’t alter an RFC, it is possible to write a
new RFC that supersedes an existing RFC.

right-hand side (RHS) In a map with two columns, the right hand side is
the last column. In Postfix, the right hand side of an entry is called the value.

root See superuser.

router A computer networking device that determines the next network
point to which a data packet should be forwarded on its way toward its
destination.

S

Secure Multipurpose Internet Mail Extensions (S/MIME) An Internet stan-
dard for a secure method of sending email. It describes how encryption
information and a digital certificate can be included as part of the message
body.

Secure Socket Layer (SSL) See Transport Layer Security (TLS).
Sendmail One of the oldest and most widely used MTAs on the Internet.

Simple Authentication and Security Layer (SASL) An authentication frame-
work defined in RFC 2222 (ftp://ftp.rfc-editor.org/in-notes/rfc2222.txt) for
applications that use connections based on protocols such as IMAP, LDAP,
or SMTP. It provides authentication services to those applications and can
look up user data in numerous data backends.

Simple Mail Transfer Protocol (SMTP) A protocol defined in STD 10, RFC
821, used to transfer email between computers. See http://www.fags.org/rfcs/
std/std-index.html.

Structured Query Language (SQL) A programming language used for
interacting with databases.

superuser Aka root, the superuser is the user who has all rights and
permissions in all modes (single-user or multi-user) on a Unix-style
operating system.

T

tarpit A service on a computer system (usually a server) that delays incom-
ing connections for as long as possible. A tarpit makes network abuses, such
as spamming or dictionary attacks, less effective because it takes the attacker
too long to process the attack. The name is an analogy to a tar pit, in which

animals can get bogged down and slowly sink under the surface. Also known
by the German name teergrube.

telnet A network protocol used on the Internet. It is also the name of a pro-
gram used to invoke a telnet session to a remote host.

top-level domain The last and most significant component of an Internet
fully qualified domain name, the part after the last dot. For example, the
host mail.example.comis in the com top-level domain (which is for commercial
bodies).

Transport Layer Security (TLS) TLS (formerly SSL) is a protocol for
encrypting the communication layer between a client and a server. It should
not be confused with email encryption technologies such as S/MIME and
PGP, which encrypt content but not communication.

Glossary 447

448

Glossary

u
Unix An operating system that originated at Bell Labs in 1969.

Unix domain socket Unix domain sockets (the correct standard POSIX
term is POSIX Local IPC Sockets) function primarily as a means for interpro-
cess communication and are therefore also called IPC sockets. These con-
nections are from the local computer to itself; they are not connections
actually transmitted over a physical network.

Unix-to-Unix Copy Protocol (UUCP) A Unix utility program and protocol
that allows one Unix system to send files to another via a serial line, which
may be a cable going directly from one machine’s serial port to another’s,
or may involve a modem at each end of a telephone line.

Software is also available to allow UUCP to work over Ethernet, though
there are better alternatives, such as scp for file transfer, SMTP for email, and
NNTP for news.

unsolicited commercial email (UCE) UCE is a more precise expression for
spam. UCE must not be mistaken for commercial email that recipients sub-
scribed for at their own will.

w

whitespace A whitespace character is any character that takes up space but
does not show up on a display.

	postfix_big.jpg
	Absolute Postfix _ Patches Are for Qmail.pdf

